USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Search Products Database » Search Results

Search Results

Content image.
 
This is an ARMI Product. Inferential biases linked to unobservable states in complex occupancy models
Authors: Mosher BA, Bailey LL, Hubbard BA, Huyvaert KP | Date: 2017-02 | Outlet: Ecography DOI: 10.1111/ecog.02849 | Format: .PDF
Our work is motivated by the impacts of the emerging infectious disease chytridiomycosis, a disease of amphibians that associated with declines of many species worldwide. Using this host-pathogen system as a general example, we first illustrate how misleading inferences can result from failing to incorporate pathogen dynamics into the modeling process, especially when the pathogen is difficult or impossible to survey in the absence of a host species. We found that traditional modeling techniques can underestimate the effect of a pathogen on host species occurrence and dynamics when the pathogen can only be detected in the host, and pathogen information is treated as a covariate. We propose a dynamic multistate modeling approach that is flexible enough to account for the detection structures that may be present in complex multistate systems, especially when the sampling design is limited by a species’ natural history or sampling technology.


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/search/results.php?productid=184742
Page Contact Information: ARMI Webmaster
Page Last Modified: Wednesday, December 13, 2017