Search Results

Papers & Reports Estimation of metademographic rates and landscape connectivity for a conservation-reliant anuran
Click to copy
Authors: Duarte A, Peterson JT, Pearl CA, Rowe JC, McCreary B, Galvan SK, Adams MJ | Outlet: Landscape Ecology
Context Amphibian conservation efforts commonly assume populations are tied to waterbodies that collectively function as a metapopulation. This assumption is rarely evaluated, and there is a need to understand the degree of connectivity among patches to appropriately define, manage, and conserve biological populations.

Objectives Our objectives were to quantify local persistence, colonization, and recruitment (metademographic rates) in relation to habitat attributes, evaluate the influence of the spatial arrangement of patches on landscape-scale population dynamics, and estimate the scale at which metapopulation dynamics are occurring for the Oregon spotted frog (Rana pretiosa).

Methods We collected R. pretiosa detection/non-detection data and habitat information from 93 sites spread throughout the species’ core extant range in Oregon, USA, 2010–2018. We developed a spatial multistate dynamic occupancy model to analyze these data.

Results Results indicated the proportion of sites occupied by R. pretiosa was relatively stable despite regular turnover in site occupancy. Connectivity was highest when the distance between sites was within 4.49–7.70 km, and populations within 1 km are at the appropriate spatial scale for effective population management. Rana pretiosa metademographic rates were strongly tied to water availability, vegetation characteristics, and beaver dams.

Conclusions Our analysis provides critical information to identify the appropriate spatial scale for effective population management, estimates the distance at which populations are connected, and quantifies the effects of hypothesized threats to species at a landscape scale. We believe this type of model can inform conservation and management strategies for multiple species.
Southern California slender salamander ([I]Batrachoseps major[/I]).
Southern California slender salamander (Batrachoseps major).
Chris Brown, U.S. Geological Survey
Papers & Reports Changes in capture rates and body size among vertebrate species occupying an insular urban habitat reserve
Click to copy
Authors: Stanley TR, Clark RW, Fisher RN, Rochester CJ, Root SA, Lombardo KJ, Ostermann-Kelm SD | Date: 2020-06-29 | Outlet: Conservation Science and Practice 2020;e245. | Format: .PDF
Long-term ecological monitoring provides valuable and objective scientific information to inform management and decision making. In this paper we analyze 22 years of herpetofauna monitoring data from the Point Loma Ecological Conservation Area (PLECA), an insular urban reserve near San Diego, California. Our analysis showed that counts of individuals for one of the four most common terrestrial vertebrates declined, whereas counts for other common species increased or remained stable. Two species exhibited declines in adult body length, whereas biomass pooled over the five most common species increased over time and was associated with higher wet season precipitation. Although the habitat and vegetation at PLECA have remained protected and intact, we suspect that changes in arthropod communities may be driving changes in the abundance, growth, and development of insectivorous lizards. This study underscores the value of long-term monitoring for establishing quantitative baselines to assess biological changes that would otherwise go undetected.
A scarletsnake ([I]Cemophora coccinea[/I]) from Wilson County, Tennessee
A scarletsnake (Cemophora coccinea) from Wilson County, Tennessee
Brad M. Glorioso
Papers & Reports Herpetofauna of the cedar glades and associated habitats of the Inner Central Basin of Middle Tennessee
Click to copy
Authors: Niemiller ML, Reynolds RG, Glorioso BM, Spiess J, Miller BT | Date: 2011 | Outlet: Herpetological Conservation and Biology6(1):127-141 | Format: .PDF
The cedar glades and barrens of the Inner Central Basin (ICB) of middle Tennessee support a unique and diverse flora and fauna and represent some of the state’s most valued natural areas. We conducted herpetofaunal inventories of the cedar glades, associated barrens, cedar-hardwood forest, and adjacent aquatic habitats of the Stones River drainage of Middle Tennessee, focusing our sampling effort primarily at seven state- or federally owned properties in Rutherford and Wilson counties. These properties included Stones River National Battlefield (SRNB), Flat Rock State Natural Area (FRSNA), Vesta Cedar Glade State Natural Area (VSNA), Fall Creek Recreation Area (FCRA) on J. Percy Priest Wildlife Management Area, Cedars of Lebanon State Forest (CLSF), Cedars of Lebanon State Forest Natural Area (CLSNA), and Cedars of Lebanon State Park (CLSP). We used a variety of inventory techniques in terrestrial, aquatic, and subterranean habitats to survey these properties periodically from 1989 to 2010. We documented 49 species (22 amphibian and 27 reptile) accounting for 75.4% of the 65 herpetofaunal species thought to occur in the ICB, including records for Cemophora coccinea, Aneides aeneus, Gyrinophilus palleucus, Ambystoma barbouri, and Pseudotriton montanus. We found differences in alpha and beta diversity between sites, with the CLSF complex containing a high of 41 herpetofaunal species and FRSNA containing a low of 23 species. Beta diversity comparisons indicated similarity in amphibian species composition between FRSNA and CLSF and between SRNB and CLSF (9 shared species), and in reptile species composition between VSNA and the CLSF complex (16 shared species). We compare the results of our inventory with two previous studies conducted in the area and discuss the relative abundance, conservation, and threats to the herpetofaunal community of these habitats.
One of eight head-started alligator snapping turtles [I]Macrochelys temminckii[/I] captured in 2018 in hoop nets along Bundick Creek in southwest Louisiana during this study. Note its external tag located posteriorly.
One of eight head-started alligator snapping turtles Macrochelys temminckii captured in 2018 in hoop nets along Bundick Creek in southwest Louisiana during this study. Note its external tag located posteriorly.
Glorioso BM
Papers & Reports A trapping survey targeting head-started alligator snapping turtles in southwest Louisiana
Click to copy
Authors: Glorioso BM, Muse LJ, Hillard CJ, Maldonado BR, Streeter J, Battaglia CD, Waddle JH | Date: 2020 | Outlet: Journal of Fish and Wildlife Management

Papers & Reports Survival estimates for the invasive American Bullfrog
Click to copy
Authors: Howell PE, Muths E, Sigafus BH, Hossack BR | Outlet: Amphibia-Reptilia
We used five years of capture mark-recapture data to estimate annual apparent survival of post-metamorphic bullfrogs in a population on the Buenos Aires National Wildlife Refuge in their invaded range in Arizona, U.S.A.
Papers & Reports Amphibian chytrid prevalence on boreal toads in SE Alaska and NW British Columbia: tests of habitat, life stages, and temporal trends
Click to copy
Authors: Hossack BR, Adams MJ, Honeycutt RK, Belt JJ, Pyare S | Date: 2020 | Outlet: Diseases of Aquatic Organisms 137:159-165
Tracking and understanding variation in pathogens such as Batrachochytrium dendrobatidis
(Bd), the agent of amphibian chytridiomycosis, which has caused population declines
globally, is a priority for many land managers. However, relatively little sampling of amphibian
communities has occurred at high latitudes. We used skin swabs collected during 2005?2017 from
boreal toads Anaxyrus boreas (n = 248), in southeast Alaska (USA; primarily in and near Klondike
Gold Rush National Historical Park [KLGO]) and northwest British Columbia (Canada) to determine
how Bd prevalence varied across life stages, habitat characteristics, local species richness,
and time. Across all years, Bd prevalence peaked in June and was >3 times greater for adult toads
(37.5%) vs. juveniles and metamorphs (11.2%). Bd prevalence for toads in the KLGO area, where
other amphibian species are rare or absent, was highest from river habitats (55.0%), followed by
human-modified upland wetlands (32.3%) and natural upland wetlands (12.7%)—the same rankorder
these habitats are used for toad breeding. None of the 12 Columbia spotted frogs Rana
luteiventris or 2 wood frogs R. sylvatica from the study area tested Bd-positive, although all were
from an area of low host density where Bd has not been detected. Prevalence of Bd on toads in the
KLGO area decreased during 2005?2015. This trend from a largely single-species system may be
encouraging or concerning, depending on how Bd is affecting vital rates, and emphasizes the
need to understand effects of pathogens before translating disease prevalence into management
actions.
Papers & Reports Contrasting demographic responses of toad populations to regionally synchronous pathogen (Batrachochytrium dendrobatidis) dynamics
Click to copy
Authors: Hossack BR, Russell RE, McCaffery R | Date: 2020 | Outlet: Biological Conservation 241: 108373
Batrachochytrium dendrobatidis (Bd), a fungal pathogen that causes amphibian chytridiomycosis, has been implicated in population declines globally. To better understand how Bd affects survival and how threats vary spatially and temporally, we conducted long-term (range: 9–13 yrs) capture-recapture studies of boreal toads (Anaxyrus boreas) from three similar communities in western Montana. We also estimated temporal and spatial variation in population-level Bd prevalence among populations and the potential role of co-occurring Columbia spotted frogs (Rana luteiventris) in driving infection dynamics. Hierarchical models that accounted for detection uncertainty revealed Bd reduced apparent survival in one population that declined, was unassociated with survival in one stationary population, and was associated with increased survival in one population that is near extirpation. Despite different effects of Bd on hosts, pathogen prevalence was similar and synchronous across the populations separated by 111 – 176 km. Variation in Bd prevalence was driven partly by seasonal temperatures, but opposite the direction expected. Bd prevalence also decreased sharply over time across all populations, unrelated to trends in temperature, boreal toad survival, or infection dynamics of co-occurring Columbia spotted frogs. Toad Bd prevalence increased when frog abundance was high, consistent with an amplification effect. However, Bd prevalence of toads decreased as Bd prevalence of spotted frogs increased, consistent with a dilution effect. Our results reveal surprising variation in responses to Bd and show pathogen prevalence is not predictive of survival or population risk, and they illustrate the complexity in understanding disease dynamics across multiple populations.
Papers & Reports Monitoring of Boreal Toads (Anaxyrus boreas) in Klondike Gold Rush National Historical Park: Survey design recommendations and trends in wetland occupancy and amphibian chytrid
Click to copy
Authors: Chambert T, Belt J, Hossack BR | Outlet: Final report to NPS
Boreal Toads (Anaxryus boreas, previously Bufo boreas) have been monitored in and around Klondike Gold Rush National Historical Park (KLGO) since 2004. Because of their significant cultural and ecological importance, and due to threats of habitat change and the presence of the pathogenic chytrid fungus (Batrachochytrium dendrobatidis), the surveillance of Boreal Toad populations has become a priority. We analyzed data collected by the park during 2005–2018 to assess the global trend of toads’ occupancy in KLGO. To provide insight into the likelihood that sites produce metamorphs, we also estimated survival of larvae from early in the season (June-July) to late season (July-August) at 8 core sites that were surveyed intensively during most years. In addition, we used simulations and statistical power analyses to make recommendations on how to improve the sampling design of this monitoring program.

Papers & Reports Species-specific responses to wetland mitigation among amphibians in the Greater Yellowstone Ecosystem
Click to copy
Authors: Swartz LK, Lowe WH, Muths E, Hossack BR | Date: 2020 | Outlet: Restoration Ecology 28:206-214
Habitat loss and degradation are leading causes of biodiversity declines, therefore assessing the capacity of created mitigation wetlands to replace habitat for wildlife has become a management priority. We used single season occupancy models to compare occurrence of larvae of four species of pond-breeding amphibians in wetlands created for mitigation, wetlands impacted by road construction, and unimpacted reference wetlands along a highway corridor in the Greater Yellowstone Ecosystem, U.S.A. Created wetlands were shallow and had less aquatic vegetation and surface area than impacted and reference wetlands. Occupancy of barred tiger salamander (Ambystoma mavortium) and boreal chorus frog (Pseudacris maculata) larvae was similar across wetland types, whereas boreal toads (Anaxyrus boreas) occurred more often in created wetlands than reference and impacted wetlands. However, the majority of created wetlands (> 80%) dried partially or completely before amphibian metamorphosis occurred in both years of our study, resulting in heavy mortality of larvae and, we suspect, little to no recruitment. Columbia spotted frogs (Rana luteiventris), which require emergent vegetation that is not common in newly-created wetlands, occurred commonly in impacted and reference wetlands but were found in only one created wetland. Our results show that shallow created wetlands with little aquatic vegetation may be attractive breeding areas for some amphibians, but may result in high mortality and little recruitment if they fail to hold water for the entire larval period.
Maps of 4 bottomland hardwood restoration sites in northeastern Indiana, USA, showing restored areas (labeled with year of planting), amphibian sampling transects, and locations of acoustic automated recording units.
Maps of 4 bottomland hardwood restoration sites in northeastern Indiana, USA, showing restored areas (labeled with year of planting), amphibian sampling transects, and locations of acoustic automated recording units.
Papers & Reports Amphibian monitoring in hardwood forests: optimizing methods for contaminant-based compensatory restorations
Click to copy
Author: Kunz BK, Waddle JH, Green NS | Date: 2019-08-05 | Outlet: Integrated Environmental Assessment and Management 2019:1-15
Amphibians such as frogs, toads, and salamanders provide important services in aquatic and terrestrial ecosystems and have been proposed as useful indicators of progress and success for ecological restoration projects. Limited guidance is available, however, on the costs and benefits of different amphibian monitoring techniques that might be applied to sites restored in compensation for contaminant injury. We used a variety of methods to document the amphibian communities present at four restored bottomland hardwood sites in Indiana, and to compare the information return and cost of each method. For one method—automated recording units—we also modeled the effect of varying levels of sampling effort on the number of species detected, using sample-based rarefaction and Bayesian nonlinear (Michaelis-Menten) mixed effects models. We detected 13 amphibian species across the restored sites, including two species of conservation concern in Indiana—northern leopard frogs (Lithobates pipiens) and northern cricket frogs (Acris crepitans). Sites across a range of restoration ages demonstrated encouraging returns of amphibian communities. While more mature sites showed greater species richness, recently restored sites still provided important habitat for amphibians, including species of conservation concern. Among the four methods compared, amphibian rapid assessment yielded the highest number of species detected and the greatest catch per unit effort, with the lowest per-site cost. Our analysis of rarefied acoustic data found that number of nights sampled was a better predictor of observed species richness than the number of hours sampled within a night or minutes sampled within an hour. These data will assist restoration practitioners in selecting amphibian monitoring methods appropriate for their site characteristics and budget.