Search Results

Papers & Reports OVERVIEW OF EMERGING AMPHIBIAN PATHOGENS AND MODELING ADVANCES FOR CONSERVATION-RELATED DECISIONS
Click to copy
Authors: DiRenzo GV, Grant EHC | Outlet: Biological Conservation
One of the leading causes of global amphibian decline is emerging infectious disease. We summarize the disease ecology of four major emerging amphibian infectious agents: chytrids, ranaviruses, trematodes, and Perkinsea. We focus on recently developed quantitative advances that build on well-established ecological theories and aid in studying epizootic and enzootic disease dynamics. For example, we identify ecological and evolutionary selective forces that determine disease outcomes and transmission pathways by borrowing ideas from population and community ecology theory. We outline three topics of general interest in disease ecology: (i) the relationship between biodiversity and disease risk, (ii) individual, species, or environmental transmission heterogeneity, and (iii) pathogen coinfections. Finally, we identify specific knowledge gaps impeding the success of conservation-related decisions for disease mitigation and the future of amphibian conservation success.
Papers & Reports A three-pipe problem: dealing with complexity to halt amphibian declines
Click to copy
Authors: Converse S, Grant EHC | Outlet: Biological Conservation
Natural resource managers are increasingly faced with threats to managed ecosystems that are largely outside of their control. Examples include land development, climate change, invasive species, and emerging infectious diseases. All of these are characterized by large uncertainties in timing, magnitude, and effects on species. In many cases, the conservation of species will only be possible through concerted action on the limited elements of the system that managers can control. However, before an action is taken, a manager must decide how to act, which is ? if done well ? not easy. In addition to dealing with uncertainty, managers must balance multiple potentially competing objectives, often in cases when the management actions available to them are limited. Guidance in making these types of challenging decisions can be found in the practice known as decision analysis. We demonstrate how using a decision-analytic approach to frame decisions can help identify and address impediments to improved conservation decision making. We demonstrate the application of decision analysis to two high-elevation amphibian species. An inadequate focus on the decision-making process, and an assumption that scientific information is adequate to solve conservation problems, must be overcome to advance the conservation of amphibians and other highly threatened taxa.
Papers & Reports Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape
Click to copy
Authors: Jarchow CJ, Sigafus BH, Muths E, Hossack BR | Date: 2019-08 | Outlet: Wetlands
Many natural wetlands around the world have disappeared or been replaced, resulting in the dependence of many wildlife species on small, artificial earthen stock ponds. These ponds provide critical wildlife habitat, such that the accurate detection of water and assessment of inundation extent is required. We applied a full (linear spectral mixture analysis; LSMA) and partial (matched filtering; MF) spectral unmixing algorithm to a 2007 Landsat 5 and a 2014 Landsat 8 satellite image to determine the ability of a time-intensive (i.e., more spectral input; LSMA) vs. a more efficient (less spectral input; MF) spectral unmixing approach to detect and estimate surface water area of stock ponds in southern Arizona, USA and northern Sonora, Mexico. Spearman rank correlations (rs) between modeled and actual inundation areas less than a single Landsat pixel (< 900 m2) were low for both techniques (rs range = 0.22 to 0.62), but improved for inundation areas > 900 m2 (rs range = 0.34 to 0.70). Our results demonstrate that the MF approach can model ranked inundation extent of known pond locations with results comparable to or better than LSMA, but further refinement is required for estimating absolute inundation areas and mapping wetlands < 1 Landsat pixel.

Papers & Reports A statistical forecasting approach to metapopulation viability analysis
Click to copy
Authors: Howell PE, Hossack BR, Muths E, Sigafus BH, Chenevert-Steffler A, Chandler RB | Date: 2020 | Outlet: Ecological Applications 2020:e02038
Conservation of at-risk species is aided by reliable forecasts of the consequences of environmental change and management actions on population viability. Forecasts from conventional population viability analysis (PVA) are made using a two-step procedure in which parameters are estimated, or elicited from expert opinion, and then plugged into a stochastic population model without accounting for parameter uncertainty. Recently-developed statistical PVAs differ because forecasts are made conditional on models that are fitted to empirical data. The statistical forecasting approach allows for uncertainty about parameters, but it has rarely been applied in metapopulation contexts where spatially-explicit inference is needed about colonization and extinction dynamics and other forms of stochasticity that influence metapopulation viability. We conducted a statistical metapopulation viability analysis (MPVA) using 11 years of data on the federally-threatened Chiricahua leopard frog to forecast responses to landscape heterogeneity, drought, environmental stochasticity, and management. We evaluated several future environmental scenarios and pond restoration options designed to reduce extinction risk. Forecasts over a 50-yr time horizon indicated that metapopulation extinction risk was <8% for all scenarios, but uncertainty was high. Without pond restoration, extinction risk is forecasted to be 5.6% (95% CI: 0?60%) by year 2060. Restoring six ponds by increasing hydroperiod reduced extinction risk to 1.0% (0 ? 11%) in year 2060. We found little evidence that drought influences metapopulation viability when managers have the ability to maintain ponds that hold water throughout the year and are free of invasive species. Our study illustrates the utility of the spatially explicit statistical forecasting approach to MPVA in conservation planning efforts.
Papers & Reports Spatial capture-recapture reveals age- and sex-specific survival and movement in stream amphibians
Click to copy
Authors: Honeycutt RK, Garwood WH, Lowe WH, Hossack BR | Date: 2019 | Outlet: Oecologia 19:821-833
Life history information sets the foundation for our understanding of ecology and conservation requirements. For many species, this information is lacking even for basic demographic rates such as survival and movement. When survival and movement estimates are available, they are often derived from mixed demographic groups and do not consider differences among life stages or sexes, which is critical because life stages and sexes often contribute differentially to population dynamics. We used hierarchical models informed with spatial capture-mark-recapture data of Ascaphus montanus (Rocky Mountain tailed frog) in 5 streams and A. truei (coastal tailed frog) in 1 stream to estimate variation in survival and movement by sex and age, represented by size. By incorporating survival and movement into a single model, we were able to estimate both parameters with limited bias. Annual survival was similar between sexes of A. montanus (females = 0.885 [95% CI: 0.614?1], males = 0.901 [0.657?1]), but was slightly higher for female A. truei (0.836 [0.560?0.993]) than for males (0.664 [0.354?0.962]). Survival of A. montanus peaked at mid-age, suggesting that lower survival of young and actuarial senescence may influence population demographics. Our models suggest that younger A. montanus moved farther than older individuals, and that females moved farther than males in both species. Our results provide uncommon insight into age- and sex-specific rates of survival and movement that are crucial elements of life-history strategies and are important for modeling population growth and prescribing conservation actions.
Papers & Reports Multistate occupancy modeling improves understanding of amphibian breeding dynamics in the Greater Yellowstone Area
Click to copy
Authors: Gould, WR, Ray, AM, Bailey, LL, Thoma, D, Daley, R, Legg, K | Outlet: Ecological Applications
Land cover map showing high habitat heterogeneity across six focal regions in the Pacific Northwest, USA. Regions were delineated using a Bayesian clustering algorithm.
Land cover map showing high habitat heterogeneity across six focal regions in the Pacific Northwest, USA. Regions were delineated using a Bayesian clustering algorithm.
Robertson et al. 2018
Papers & Reports Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the U.S. Pacific Northwest
Click to copy
Authors: Robertson JM, Murphy MA, Pearl CA, Adams MJ, Páez-Vacas MI, Haig SM, Pilliod DS, Storfer A, Funk WC | Date: 2018-07-16 | Outlet: Molecular Ecology | Format: .PDF
Comparative landscape genetics has uncovered high levels of variability in which landscape factors affect connectivity among species and regions. However, the relative importance of species traits vs. environmental variation for predicting landscape patterns of connectivity is unresolved. We provide a test with a landscape genetics study of two sister taxa of frogs, the Oregon spotted frog (Rana pretiosa) and the Columbia spotted frog (R. luteiventris) in Oregon and Idaho, USA. Rana pretiosa is relatively more dependent on moisture for dispersal than R. luteiventris, so if species traits influence connectivity, we predicted that connectivity among R. pretiosa populations would be more positively associated with moisture than R. luteiventris. However, if environmental differences are important drivers of gene flow, we predicted that connectivity would be more positively related to moisture in arid regions. We tested these predictions using eight microsatellite loci and gravity models in two R. pretiosa regions and four R. luteiventris regions (n = 1,168 frogs). In R. pretiosa, but not R. luteiventris, connectivity was positively related to mean annual precipitation, supporting our first prediction. In contrast, connectivity was not more positively related to moisture in more arid regions. Various temperature metrics were important predictors for both species and in all regions, but the directionality of their effects varied. Therefore, the pattern of variation in drivers of connectivity was consistent with predictions based on species traits rather than on environmental variation.
Burned hillside from recent fire in chaparral in southern California.  Even cactus can be seen burned. The lack of organic materials changed soil moisture and impacts amphibians.
Burned hillside from recent fire in chaparral in southern California. Even cactus can be seen burned. The lack of organic materials changed soil moisture and impacts amphibians.
Robert Fisher USGS
Papers & Reports Prioritizing conserved areas threatened by wildfire for monitoring and management
Click to copy
Authors: Tracey J A, Rochester C J, Hathaway S A, Preston K L, Syphard A D, Vandergast A G, Diffendorfer J E, Franklin J, MacKenzie J B, Oberbauer T A, Tremor S, Winchell C, Fisher R N | Date: 2018-09-07 | Outlet: PLoS ONE | Format: .PDF
In many parts of the world, the combined effects of habitat fragmentation and altered disturbance regimes pose a significant threat to biodiversity. This is particularly true in Mediterranean-type ecosystems (MTEs), which tend to be fire-prone, species rich, and heavily impacted by human land use. Given the spatial complexity of overlapping threats and species? vulnerability along with limited conservation budgets, methods are needed for prioritizing areas for monitoring and management in these regions. We developed a multi-criteria Pareto ranking methodology for prioritizing spatial units for conservation and applied it to fire threat, habitat fragmentation threat, species richness, and genetic biodiversity criteria in San Diego County, California, USA. We summarized the criteria and Pareto ranking results (from west to east) within the maritime, coastal, transitional, inland climate zones within San Diego County. Fire threat increased from the maritime zone eastward to the transitional zone, then decreased in the mountainous inland climate zone. Number of fires and fire return interval departure were strongly negatively correlated. Fragmentation threats, particularly road density and development density, were highest in the maritime climate zone and declined as we moved eastward and were positively correlated. Species richness criteria showed distributions among climate zones similar to that of the fire threat variables. When using species richness and fire threat criteria, most lower-ranked (higher conservation priority) units occurred in the coastal and transitional zones. When considering genetic biodiversity, lower-ranked units occurred more often in the mountainous inland zone. With Pareto ranking, there is no need to select criteria weights as part of the decision-making process. However, negative correlations and larger numbers of criteria can result in more units assigned to the same rank. Pareto ranking is broadly applicable and can be used as a standalone decision analysis method or in conjunction with other methods.
Otay Fire in 2003 on Otay Mountain.
Otay Fire in 2003 on Otay Mountain.
Robert Fisher, USGS
Papers & Reports Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?
Click to copy
Authors: Syphard AD, Butsic V, Bar-Massada A, Keeley JE, Tracey JA, Fisher RN | Date: 2016 | Outlet: Ecology and Society 21(3):2. | Format: .PDF
Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection
strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.

Papers & Reports Mapping habitat for multiple species in the Desert Southwest.
Click to copy
Authors: Inman RD, Nussear KE, Esque TC, Vandergast AG, Hathaway SA, Wood DA, Barr KR, Fisher RN | Date: 2014 | Outlet: U.S. Geological Survey Open-File Report 2014-1134, pp. 92 | Format: .PDF
Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among
populations, and species’ abilities to adapt to changing environmental conditions. Understanding these
factors will help managers select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (vertnet.org/index.php), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.