USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Recent Products

Recent Products

This is an ARMI Product. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic’s edge
Authors: Davenport JM, Hossack BR, Fishback L | Outlet: Global Change Biology
Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1°C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1–4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment that are expected in this ecosystem will reduce mean fitness of populations across the landscape.

This is an ARMI Product. Even with forewarning, challenges remain in developing a proactive response to emerging infectious diseases
Authors: Grant EHC, Muths E, Katz RA, Canessa S, Adams MJ, Ballard JR, Berger L, Briggs CJ, Coleman JH, Gray MJ, Harris MC, Harris RN, Hossack B, Huyvaert KP, Kolby J, Lips KR, Lovich RE, McCallum HI, Mendelson III JR, Nanjappa P, Olson DH, Powers JG, Richgels KLD, Russell RE, Schmidt BR | Outlet: Frontiers in Ecology and Evolution
Despite calls for improving responses to emerging infectious diseases of wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive, management framework can identify immediate actions that reduce future impacts even before a disease is detected, as well as prepare actions conditional on disease emergence. We identify four main challenges to developing proactive management strategies for the newly discovered salamander pathogen, Batrachochytrium salamandrivorans (Bsal). Given that deep uncertainty is a hallmark of wildlife disease management and decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs among proactive (pre-emergence) and reactive (post-emergence) management. Using principles from decision analysis, natural resources agencies and policy-makers can utilize a variety of tools to improve the development of management strategies for emerging infectious diseases.

This is an ARMI Product. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change.
Authors: Muñoz DJ, Hesed KM, Grant EHC, Miller DAW | Outlet: Ecology and Evolution
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5 year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species’ responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.  

This is an ARMI Product. Amphibian dynamics in constructed ponds on a wildlife refuge: developing expected responses to hydrological restoration
Author: Hossack BR | Date: 2016 | Outlet: Hydrobiologia
Management actions are based upon predictable responses. To form expected responses to restoration actions, I estimated habitat relationships and trends (2002‒2015) for four pond-breeding amphibians on a wildlife refuge (Montana, USA) where changes to restore historical hydrology to the system greatly expanded (≥8 times) the flooded area of the primary breeding site for western toads (Anaxyrus boreas). Additional restoration actions are planned for the near future, including removing ponds that provide amphibian habitat. Multi-season occupancy models based on data from 15 ponds sampled during 7 years revealed that the number of breeding subpopulations increased modestly for Columbia spotted frogs (Rana luteiventris) and was stationary for long-toed salamanders (Ambystoma macrodactylum) and Pacific treefrogs (Pseudacris regilla). For these three species, pond depth was the characteristic that was associated most frequently with occupancy or changes in colonization and extinction. In contrast, a large decrease in colonization by western toads explained the decline from eight occupied ponds in 2002 to two ponds in 2015. This decline occurred despite an increase in wetland area and the colonization of a newly-created pond. These changes highlight the challenges of managing for multiple species and how management responses can be unpredictable, possibly reducing the efficacy of targeted actions.

[I]Rana sierrae[/I] at a pond in Yosemite National Park.
S Dykman  
This is an ARMI Product. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors
Authors: Knapp RA, Fellers GM, Kleeman PM, Miller DAW, Vredenburg VT, Rosenblum EB, Briggs CJ | Date: 2016-10-03 | Outlet: Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1600983113 | Format: .PDF
Amphibians are one of the most threatened animal groups, with 32% of species at risk of extinction. Given this, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-year period, we show that after decades of decline and despite ongoing exposure to multiple stressors including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased 7-fold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be due in part to reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies following cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance we document suggest that when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses declines of some amphibian may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

Content image.
SA Amburgey  
This is an ARMI Product. Phenotypic plasticity in developmental rate is insufficient to offset high tadpole mortality in rapidly drying ponds
Authors: Amburgey SA, Murphy MA, Funk WC | Date: 2016-06 | Outlet: Ecosphere 2016, 00(00):e01386. 10.1002/ecs2.1386 | Format: .PDF
Habitat suitability is strongly regulated by seasonal conditions and stochastic processes, and
this is especially important in temporary aquatic systems that contain organisms with complex life cycles.
We investigated the potential for phenotypic plasticity in timing of and size at metamorphosis to mitigate
effects of altered habitat conditions, specifically shortened hydroperiod (duration of water in ponds)
and altered predator-prey dynamics, in the pond-breeding boreal chorus frog (Pseudacris maculata). We
simulated reduced hydroperiod and concentrated predator cue in the laboratory to understand potential
benefits and costs of plasticity. Tadpoles developed faster in response to the combined effects of reduced
hydroperiod and increased concentration of predator cue, potentially due to reduced conspecific density.
In contrast, there was no effect of reduced hydroperiod or predator cue on size at metamorphosis. Alone,
this result suggests that phenotypic plasticity may allow P. maculata to escape the negative effects of rapidly
drying ponds. However, tadpole survival was significantly lower in reduced hydroperiod treatments
relative to all other treatments, suggesting that even if plasticity acts as a buffer against reduced hydroperiod
by facilitating metamorphosis, heightened mortality may offset benefits of this rapid response. Our
results add to previous studies of plastic responses in amphibians by disentangling the costs and benefits
of plasticity in habitats with multiple, simultaneous stressors. We show that while plasticity may accelerate
metamorphosis, similar, heightened levels of mortality are experienced regardless of plasticity. This
implies that plasticity may not completely buffer populations against the effects of altered habitat conditions,
such as those that occur with climate change or urbanization.

Content image.
This is an ARMI Product. Potential Interactions Among Disease, Pesticides, Water Quality and Adjacent Land Cover in Amphibian Habitats in the United States
Authors: Battaglin W, Smalling K, Anderson C, Calhoun D, Chestnut T, Muths E | Date: 2016-05-24 | Outlet: Science of the Total Environment 320-332
To investigate interactions among disease, pesticides, water quality and adjacent land cover we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for > 90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-kilometer buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature.
Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive.

Content image.
S A Amburgey  
This is an ARMI Product. First Estimates of the Probability of Survival in a Small-bodied, High Elevation Frog or, how Historical Data Can Be Useful
Authors: Muths E, Scherer R D, Amburgey S M, Matthews T, Spencer A W, Corn P S | Date: 2016-06 | Outlet: Canadian Journal of Zoology, doi: 10.1139/cjz-2016-0024 | Format: .PDF
In an era of shrinking budgets yet increasing demands for conservation, the value of existing (i.e., historical) data is elevated. Lengthy time-series on common, or previously common, species are particularly valuable and may be available only through the use of historical information. We provide first estimates of the probability of survival and longevity (0.67-0.79; 5-7 yr) for a subalpine population of a small-bodied, ostensibly common amphibian, the boreal chorus frog, using historical data and contemporary, hypothesis-driven information-theoretic analyses. We also test a priori hypotheses about the effects of color morph (as suggested by early reports) and of drought (as suggested by recent climate predictions on survival). Using robust mark-recapture models, we find some support for early hypotheses regarding the effect of color on survival, but we find no effect of drought. The congruence between early findings and our analyses highlights the usefulness of historical information by providing raw data for contemporary analyses and context for conservation and management decisions.

This is an ARMI Product. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines
Authors: Grant EHC, Miller DAW, Schmidt BR, Adams MJ, Amburgey SM, Chambert TC, Cruickshank SS, Fisher RN, Green DM, Hossack BR, Johnson PTJ, Joseph MB, Rittenhouse T, Ryan M, Waddle JH, Walls SC, Bailey LL, Fellers GM, Gorman TA, Ray AM, Pilliod DS, Price SJ, Saenz D, Muths E | Outlet: Scientific Reports xx:xxx-xxx
Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a "smoking gun" was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.

Content image.
E Muths  
This is an ARMI Product. Influence of Demography and Environment on Persistence in Toad Populations
Authors: Lambert BA, Schorr RA, Schneider SC, Muths E | Date: 2016-07 | Outlet: Journal of Wildlife Management | Format: .PDF
Effective conservation of rare species requires an understanding of how potential threats impact population dynamics. Unfortunately, information about population demographics prior to threats (i.e., baseline data) is lacking for many species. Perturbations, caused by climate change, disease or other stressors can lead to population declines and heightened conservation concerns. A dearth of baseline information challenges our ability to anticipate and respond to agents of population decline. Boreal toads (Anaxyrus boreas boreas) have undergone rangewide declines due mostly to the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), with only a handful of sizable populations remaining in the southern Rocky Mountains USA, very few of which are disease-free

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: ARMI Webmaster
Page Last Modified: Tuesday, October 25, 2016