USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Disease


Cave Bd sampling
Left to Right: Tabby Cavendish (Great Smoky Mountains NP), Brian Gregory (USGS), and Jamie Barichivich (ARMI) swabbing salamanders for Batrachochytrium dendrobatidis (Bd) in Rockhouse Cave, Wheeler NWR, Alabama. Photo by: Alan Cressler.

ARMI conducts original research on various amphibian diseases in the lab and field. Our research has included estimating the impacts of diseases on the growth of populations, developing and testing potential treatments, affects of stressors on susceptibility to disease, how diseases are transmitted in the wild, and how to model disease distributions and spread.

ARMI disease research is conducted throughout the country, but ARMI pathologist Dr. David Green is based at the National Wildlife Health Center in Madison, Wisconsin, and coordinates the health screenings and investigations of amphibian mortalities (e.g., identification, pathology) in addition to collaborating on many disease research projects.

Amphibians at our long-term monitoring sites are periodically screened for diseases and we investigate mass mortality events.


National Wildlife Health Center - ARMI

ARMI Products on Disease

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

[I]Rana sierrae[/I] at a pond in Yosemite National Park.
S Dykman  
This is an ARMI Product. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors
Authors: Knapp RA, Fellers GM, Kleeman PM, Miller DAW, Vredenburg VT, Rosenblum EB, Briggs CJ | Date: 2016-10-03 | Outlet: Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1600983113 | Format: .PDF
Amphibians are one of the most threatened animal groups, with 32% of species at risk of extinction. Given this, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-year period, we show that after decades of decline and despite ongoing exposure to multiple stressors including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased 7-fold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be due in part to reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies following cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance we document suggest that when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses declines of some amphibian may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

Content image.
This is an ARMI Product. Potential Interactions Among Disease, Pesticides, Water Quality and Adjacent Land Cover in Amphibian Habitats in the United States
Authors: Battaglin W, Smalling K, Anderson C, Calhoun D, Chestnut T, Muths E | Date: 2016-05-24 | Outlet: Science of the Total Environment 320-332
To investigate interactions among disease, pesticides, water quality and adjacent land cover we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for > 90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-kilometer buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature.
Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive.

Content image.
E Muths  
This is an ARMI Product. Influence of Demography and Environment on Persistence in Toad Populations
Authors: Lambert BA, Schorr RA, Schneider SC, Muths E | Date: 2016-07 | Outlet: Journal of Wildlife Management | Format: .PDF
Effective conservation of rare species requires an understanding of how potential threats impact population dynamics. Unfortunately, information about population demographics prior to threats (i.e., baseline data) is lacking for many species. Perturbations, caused by climate change, disease or other stressors can lead to population declines and heightened conservation concerns. A dearth of baseline information challenges our ability to anticipate and respond to agents of population decline. Boreal toads (Anaxyrus boreas boreas) have undergone rangewide declines due mostly to the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), with only a handful of sizable populations remaining in the southern Rocky Mountains USA, very few of which are disease-free

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: ARMI Webmaster
Page Last Modified: Friday, October 21, 2016