USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Stressors

Stressors


Gary Fellers, air quality.
G. Fellers (ARMI) changing a filter in an air sampler that is used to measure agricultural chemicals that drift into Yosemite NP, California. Photo by: J. Fellers.

Declines in amphibian populations have occurred not only on areas clearly impacted by human activities such as urbanization, but also on protected lands intended to buffer amphibians and other wildlife from anthropogenic disturbances. Some stressors are not stopped by preserve boundaries and can affect wildlife populations 10's or 100's of kilometers from their source or point of use. For example, pesticides, fertilizers, or supplements given to livestock can be transported from the terrestrial setting where they are applied, to aquatic environments via precipitation, run-off, erosion, wind, and misuse. Conversely, some contaminants such as mercury or selenium occur naturally, but can be concentrated, or disturbed and released into the environment by human activities. Amphibian populations can be exposed to multiple stressors simultaneously, producing novel conditions with unknown outcomes.

ARMI scientists conduct research to identify stressors and evaluate their impacts on amphibian individuals and populations.

ARMI Products on Stressors

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

[I]Pseudacris regilla[/I] with hemimelia.
D. Cowman  
This is an ARMI Product. In situ effects of pesticides on amphibians in the Sierra Nevada
Authors: Sparling DW, Bickham J, Cowman D, Fellers GM, Lacher L, Matson CW, McConnell L | Date: 2015-03 | Outlet: Ecotoxicology 24:262-278 | Format: URL
For more than 20 years, conservationists have agreed that amphibian populations around the world are declining. Results obtained through laboratory or mesocosm studies and measurement of contaminant concentrations in areas experiencing declines have supported a role of contaminants in these declines. The current study examines the effects of contaminant exposure to amphibians in situ in areas actually experiencing declines. Early larval Pseudacris regilla were translocated among Lassen Volcanic, Yosemite and Sequoia National Parks, California, USA and caged in wetlands in 2001 and 2002 until metamorphosis. Twenty contaminants were identified in tadpoles with an average of 1.35.9 (maximum = 10) contaminants per animal. Sequoia National Park, which had the greatest variety and concentrations of contaminants in 2001, also had tadpoles that experienced the greatest mortality, slowest developmental rates and lowest cholinesterase activities. Yosemite and Sequoia tadpoles and metamorphs had greater genotoxicity than those in Lassen during 2001, as determined by flow cytometry. In 2001 tadpoles at Yosemite had a significantly higher rate of malformations, characterized as hemimelia (shortened femurs), than those at the other two parks but no significant differences were observed in 2002. Fewer differences in contaminant types and concentrations existed among parks during 2002 compared to 2001. In 2002 Sequoia tadpoles had higher mortality and slower developmental rates but there was no difference among parks in cholinesterase activities. Although concentrations of most contaminants were below known lethal concentrations, simultaneous exposure to multiple chemicals and other stressors may have resulted in lethal and sublethal effects.

This is an ARMI Product. Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation
Author: Battaglin W, Meyer M, Kuivila K, Dietze J | Date: 2014 | Outlet: Journal of the American Water Resources Association 50(2): 275-290. | Format: URL
Glyphosate use in the US increased from less than 5,000 to more than 80,000 metric tons per year between 1987 and 2007. Glyphosate is popular due to its ease of use on soybean, cotton and corn crops that are genetically modified to tolerate it, utility in no-till farming practices, utility in urban areas, and the perception that it has low toxicity and little mobility in the environment. This compilation is the largest and most comprehensive assessment of the environmental occurrence of glyphosate and AMPA in the US conducted to date, summarizing the results of 3,732 water and sediment and 1,018 quality-assurance samples collected between 2001 and 2010 from 38 States. Results indicate that glyphosate and AMPA are usually detected together, mobile, and occur widely in the environment. Glyphosate was detected without AMPA in only 2.3% of samples, whereas AMPA was detected without glyphosate in 17.9% of samples. Glyphosate and AMPA were detected frequently in soils and sediment, ditches and drains, precipitation, rivers, and streams; and less frequently in lakes, ponds, and wetlands; soil water; and groundwater. Concentrations of glyphosate were below levels of concern for humans or wildlife; however, pesticides are often detected in mixtures. Ecosystem effects of chronic low-level exposures to pesticide mixtures are uncertain. The environmental health risk of low-level detections of glyphosate, AMPA, and associated adjuvants and mixtures remain to be determined.

This is an ARMI Product. The effects of hydropattern and predator communities on amphibian occupancy
Authors: Amburgey S, Bailey L, Murphy M, Muths E, Funk W | Date: 2014-09-23 | Outlet: Canadian Journal of Zoology | Format: URL
Complex, interactive ecological constraints regulate species distributions, and understanding these factors is crucial for predicting species persistence. We used occupancy analysis, which corrects for imperfect detection, to test the importance of abiotic and biotic habitat and landscape factors on probability of occupancy by boreal chorus frog (Pseudacris maculata; Agassiz 1850) tadpoles. We hypothesized that hydropattern and predators are primarily important as they affect desiccation and predation risk and can interact in ways difficult to predict. We surveyed 62 wetland sites across an elevational gradient in Colorado, USA and modeled patterns in P. maculata occupancy. Tadpoles were most frequently present in intermediate hydropattern systems with lower desiccation risk and no predatory fish due to occasional drying. P. maculata occupancy had a strong negative relationship with fish presence while tadpoles, odonate larvae and tiger salamanders (Ambystoma mavortium; Baird 1850) frequently co-occurred. Dry seasonal conditions will likely result in fewer intermediate hydropattern ponds available for amphibian breeding. We hypothesize that this will force P. maculata to breed in habitats with fish. As habitats shrink, predators that co-occur with P. maculata are expected to concentrate in the remaining habitat and increase predation risk for developing tadpoles (assuming predators are similarly constricted in their habitat use as amphibians are).


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/topic.php?topic=Stressors
Page Contact Information: ARMI Webmaster
Page Last Modified: Thursday, April 02, 2015