USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Stressors

Stressors


Gary Fellers, air quality.
G. Fellers (ARMI) changing a filter in an air sampler that is used to measure agricultural chemicals that drift into Yosemite NP, California. Photo by: J. Fellers.

Declines in amphibian populations have occurred not only on areas clearly impacted by human activities such as urbanization, but also on protected lands intended to buffer amphibians and other wildlife from anthropogenic disturbances. Some stressors are not stopped by preserve boundaries and can affect wildlife populations 10's or 100's of kilometers from their source or point of use. For example, pesticides, fertilizers, or supplements given to livestock can be transported from the terrestrial setting where they are applied, to aquatic environments via precipitation, run-off, erosion, wind, and misuse. Conversely, some contaminants such as mercury or selenium occur naturally, but can be concentrated, or disturbed and released into the environment by human activities. Amphibian populations can be exposed to multiple stressors simultaneously, producing novel conditions with unknown outcomes.

ARMI scientists conduct research to identify stressors and evaluate their impacts on amphibian individuals and populations.

ARMI Products on Stressors

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

This is an ARMI Product. Indicators of the Statuses of Amphibian Populations and Their Potential for Exposure to Atrazine in Four Midwestern U.S. Conservation Areas
Authors: Sadinski W, Roth M, Hayes T, Jones P, Gallant A | Date: 2014-09-12 | Outlet: PLoS ONE 9(9): e107018. doi:10.1371/journal.pone.0107018 | Format: .PDF
Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex.

emergent wetland vegetation at Tamarac National Wildlife Refuge
Mark Roth  
This is an ARMI Product. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data.
Authors: Gallant AL, Kaya SG, White L, Brisco B, Roth MF, Sadinski W, Rover J | Date: 2014-03-24 | Outlet: Water. 2014; 6(3):694-722 | Format: .PDF
Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canadaís Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsatís optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

This is an ARMI Product. Population-level thermal performance of a cold-water ectotherm is linked to ontogeny and local environmental heterogeneity
Authors: Hossack BR, Lowe WH, Webb MAH, Talbott MJ, Kappenman KM, Corn PS | Date: 2013-11 | Outlet: Freshwater Biology 58:2215-2225 | Format: .PDF
1. Negative effects of global warming are predicted to be most severe for species that occupy a narrow range of temperatures, have limited dispersal abilities, or have long generation times. These are characteristics typical of many species that occupy small, cold streams.
2. Habitat use, vulnerabilities and mechanisms for coping with local conditions can differ among populations and ontogentically within populations, potentially affecting species-level responses to climate change. However, we still have little knowledge of mean thermal performance for many vertebrates, let alone variation in performance among populations. Assessment of these sources of variation in thermal performance is critical for projecting the effects of climate change on species and for identifying management strategies to ameliorate its effects.
3. To gauge how populations of the Rocky Mountain tailed frog (Ascaphus montanus) might respond to long-term effects of climate change, we measured the ability of tadpoles from six populations in Glacier National Park (Montana, USA) to acclimate to a range of temperatures. We compared survival among populations according to tadpole age (age 1-yr or 2-yr) and according to the mean and variance of late-summer temperatures in natal streams.
4. The ability of tadpoles to acclimate to warm temperatures increased with age and with variance in late-summer temperature of natal streams. Moreover, performance differed among populations from the same catchment.
5. Our experiments with a cold-water species show that population-level performance varies across small geographic scales and is linked to local environmental heterogeneity. This variation could influence the rate and mode of species-level responses to climate change, both by facilitating local persistence in the face of changes in thermal conditions, and by providing thermally-tolerant colonists to neighbouring populations.


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/topic.php?topic=Stressors
Page Contact Information: ARMI Webmaster
Page Last Modified: Thursday, September 18, 2014