Two-species occupancy modeling accounting for species misidentification and nondetection

Authors: Thierry C Chambert; Evan HC Grant; David AW Miller; J Nichols; K P Mulder; A B Brand
Contribution Number: 618

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12985

Abstract/Summary

1. In occupancy studies, species misidentification can lead to false positive detections, which can cause severe estimator biases. Currently, all models that account for false positive errors only consider omnibus sources of false detections and are limited to single species occupancy.

2. However, false detections for a given species often occur because of the misidentification with another, closely-related species. To exploit this explicit source of false positive detection error, we develop a two-species occupancy model that accounts for misidentifications between two species of interest. As with other false positive models, identifiability is greatly improved by the availability of unambiguous detections at a subset of site-occasions. Here, we consider the case where some of the field observations can be confirmed using laboratory or other independent identification methods (?confirmatory data?).

3. We performed three simulation studies to (1) assess the model?s performance under various realistic scenarios, (2) investigate the influence of the proportion of confirmatory data on estimator accuracy, and (3) compare the performance of this two-species model with that of the single-species false positive model. The model shows good performance under all scenarios, even when only small proportions of detections are confirmed (e.g., 5%). It also clearly outperforms the single-species model.

4. We illustrate application of this model using a four-year data set on two sympatric species of lungless salamanders: the US federally endangered Shenandoah salamander (Plethodon shenandoah), and its presumed competitor, the red-backed salamander (Plethodon cinereus). Occupancy of red-backed salamanders appeared very stable across the four years of study, whereas the Shenandoah salamander displayed substantial turn-over in occupancy of forest habitats among years.

5. Given the extent of species misidentification issues in occupancy studies, this modelling approach should help improve the reliability of estimates of species distribution, which is the goal of many studies and monitoring programs. Further developments, to account for different forms of state uncertainty, can be readily undertaken under our general approach.

Publication details
Published Date: 2018-02
Outlet/Publisher: Methods in Ecology and Evolution 9:1468-1477
Media Format:

ARMI Organizational Units:
Rocky Mountains, Northern - Biology
Northeast - Biology
Topics:
Quantitative Developments; Species and their Ecology
Notice: PDF documents require Adobe Reader or Google Chrome Browser (recommended) for viewing.