USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Water

Water


Pesticide lab.
K. Jones (USGS) extracting a water sample for pesticide analysis at Pesticide Fate Research Laboratory. Photo by: R. Todd.

The collaborative design which joins wildlife biologists and hydrologists enables ARMI to ask the kinds of questions it does about the environmental variables that affect amphibians in a truly integrated manner. Understanding how water quality, quantity, or timing affects amphibians is a critical component of ARMI research.

A hydrologist is associated with each ARMI region and works with the ARMI PI to develop and implement research and monitoring projects. These collaborations enable ARMI to ask questions about how water quality (e.g., nutrients, agro-chemicals, acidification), water budgets (e.g., ground and surface water models), storm surge impacts, or other hydrologic conditions can affect amphibian life cycles, disease transport, or habitat quality.

Resources

Hydrologic Investigations
USGS Toxics Substances Hydrology program

ARMI Products on Water

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

This is an ARMI Product. Pharmaceuticals, Hormones, Pesticides, and other Bioactive Contaminants in Water, Sediment, and Tissue from Rocky Mountain National Park, 2012-2013
Authors: Battaglin W, Bradley P, Iwanowicz L, Journey C, Blazer V | Date: 2018-06-05 | Outlet: Science of the Total Environment 643:651-673 | Format: .PDF
Pharmaceuticals, hormones, pesticides, and other bioactive contaminants (BCs) are commonly detected in surface water and bed sediment in urban and suburban areas, but these contaminants are understudied in remote locations. In Rocky Mountain National Park (RMNP), Colorado, USA, BCs may threaten the reproductive success and survival of native aquatic species, benthic communities, and pelagic food webs. In 2012-2013, 67 water, 57 sediment, 63 fish, 10 frog, and 12 quality-control samples (8 water and 4 sediment) were collected from 20 sites in RMNP. Samples were analyzed for 369 parameters including 149 pharmaceuticals, 22 hormones, 137 pesticides, and 61 other chemicals or conditions to provide a representative assessment of BC occurrence within RMNP. Results indicate that BCs were detected in water and/or sediment from both remote and more accessible locations in RMNP. The most commonly detected BCs in water were caffeine, camphor, para-cresol, and DEET; and the most commonly detected BCs in sediment were indole, 3-methyl-1H-indole, para-cresol, and 2,6-dimethyl-naphthalene. Some detected contaminants, including carbaryl, caffeine, and oxycodone, are clearly attributable to direct local human input, whereas others may be transported into the park atmospherically (e.g., atrazine) or have local natural sources (e.g., para-cresol). One or more pharmaceuticals were detected in at least 1 sample from 15 of 20 sites. Most of the 29 detected pharmaceuticals are excreted primarily in human urine, not feces. Elevated net estrogenicity was observed in 18% of water samples, and elevated vitellogenin in blood was observed in 12% of male trout, both evidence of potential endocrine disruption. Hormone concentrations in sediment tended to be greater than concentrations in water. Most BCs were observed at concentrations below those not expected to pose adverse effects to aquatic life. Results indicate that even in remote locations aquatic wildlife can be exposed to pharmaceuticals, hormones, pesticides, and other bioactive contaminants.

B. Sigafus  
This is an ARMI Product. Increasing connectivity between metapopulation ecology and landscape ecology
Authors: Howell PE, Muths E, Hossack BR, Sigafus BH, Chandler RB | Date: 2018-02 | Outlet: Ecology 99(5), 2018, pp. 1119–1128
Abstract. Metapopulation ecology and landscape ecology aim to understand how spatial structure
influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process.

 
This is an ARMI Product. Host pathogen metapopulation dynamics suggest high elevation refugia for boreal toads
Authors: Mosher BA, Bailey LL, Muths E, Huyvaert KP | Date: 2018 | Outlet: Ecological Applications | Format: .PDF
Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situ disease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bd systems.


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/topic.php?topic=Water
Page Contact Information: ARMI Webmaster
Page Last Modified: Monday, September 24, 2018