USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Disease

Disease


Cave Bd sampling
Left to Right: Tabby Cavendish (Great Smoky Mountains NP), Brian Gregory (USGS), and Jamie Barichivich (ARMI) swabbing salamanders for Batrachochytrium dendrobatidis (Bd) in Rockhouse Cave, Wheeler NWR, Alabama. Photo by: Alan Cressler.

ARMI conducts original research on various amphibian diseases in the lab and field. Our research has included estimating the impacts of diseases on the growth of populations, developing and testing potential treatments, affects of stressors on susceptibility to disease, how diseases are transmitted in the wild, and how to model disease distributions and spread.

ARMI disease research is conducted throughout the country, but ARMI pathologist Dr. David Green is based at the National Wildlife Health Center in Madison, Wisconsin, and coordinates the health screenings and investigations of amphibian mortalities (e.g., identification, pathology) in addition to collaborating on many disease research projects.

Amphibians at our long-term monitoring sites are periodically screened for diseases and we investigate mass mortality events.

Resources

National Wildlife Health Center - ARMI

ARMI Products on Disease

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

Content image.
Robert Fisher  
This is an ARMI Product. Occurrence of Batrachochytrium dendrobatidis in anurans of the Mediterranean region of Baja California, M?xico
Authors: Peralta-Garc?a A, Adams AJ, Galina-Tessaro P, Briggs CJ, Valdez-Villavicencio JH, Hollingsworth BD, Shaffer HB, Fisher RN | Outlet: Diseases of Aquatic Organisms | Format: URL
Chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) and is regarded as one of the most significant threats to global amphibian populations. In M?xico, Bd was first reported in 2003 and has now been documented in 13 states. We visited 33 localities and swabbed 199 wild-caught anurans from seven species (five native, two exotic) across the Mediterranean region of the state of Baja California. Using quantitative PCR, Bd was detected in 94 individuals (47.2% of samples) at 25 of the 33 survey localities for five native and one exotic frog species. Only the non-native Xenopus laevis tested negative for Bd. We found significant differences between mean Bd loads of different species, and that remoteness and distance to agricultural land were the best positive predictors of Bd prevalence. These are the first Bd-positive results for the state of Baja California and its presence should be regarded as an additional conservation threat to the region?s native frog species.

This is an ARMI Product. Batrachochytrium salamandrivorans and the risk of a second amphibian pandemic
Authors: Yap Tiffany A, Nguyen Natalie T, Serr Megan, Shepack Alexander, Vredenburg Vance T | Date: 2017-11-16 | Outlet: EcoHealth doi.org/10.1007/s10393-017-1278-1
Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd was described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsal originated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.

Content image.
BA Mosher  
This is an ARMI Product. Design- and model-based recommendations for detecting and quantifying an amphibian pathogen in environmental samples
Authors: Mosher BA, Huyvaert KP, Chestnut T, Kerby JL, Madison JD, Bailey LL | Date: 2017-12 | Outlet: Ecology and Evolution | Format: .PDF
Accurate pathogen detection is essential for developing management strategies to address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for free-living pathogens outside of their hosts has benefits for inference and study efficiency, but is still uncommon. We used a laboratory experiment to evaluate the influences of pathogen concentration, water type, and qPCR inhibitors on the detection and quantification of Batrachochytrium dendrobatidis (Bd) using water filtration. We compared results pre- and post-inhibitor removal, and assessed inferential differences when single versus multiple samples were collected across space or time. We found that qPCR inhibition influenced both Bd detection and quantification in natural water samples, resulting in biased inferences about Bd occurrence and abundance. Biases in occurrence could be mitigated by collecting multiple samples in space or time, but biases in Bd quantification were persistent. Differences in Bd concentration resulted in variation in detection probability, indicating that occupancy modeling could be used to explore factors influencing heterogeneity in Bd abundance among samples, sites, or over time. Our work will influence the design of studies involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to understand species distributions.


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://armi.usgs.gov/topic.php?topic=Disease
Page Contact Information: ARMI Webmaster
Page Last Modified: Monday, February 19, 2018