Climate Change

Freshwater wetlands provide critical habitat for a diverse array of organisms including many amphibians. Yet, under the continued impacts of water diversions and the newer threats of climate change, these habitats are among the most imperiled ecosystems on Earth. Climate change has the potential to alter many sources of water critical to the habitats amphibians need, especially those associated with breeding and development. Potential changes include: change in timing and availability of water from glacier melt, snow and rain timing and amount; persistence of vernal pools and seasonal wetlands; altered evapotranspiration rates; and reduced stream flows and groundwater recharge rates.

Other ecosystem components likely to change in response to climate change include the timing and frequency of fires, the spread of invasive plants and animals, and microclimates in which the animals live.

Robert Fisher and Stacey Hathaway (ARMI) ground-truthing potential desert-frog breeding sites selected using remote sensing of soil characteristics derived from known breeding site. Photo by: C. Schwalbe.

Climate Change - ARMI Papers & Reports

Southern California slender salamander ([I]Batrachoseps major[/I]).
Southern California slender salamander (Batrachoseps major).
Chris Brown, U.S. Geological Survey
Papers & Reports Changes in capture rates and body size among vertebrate species occupying an insular urban habitat reserve
Click to copy
Authors: Stanley TR, Clark RW, Fisher RN, Rochester CJ, Root SA, Lombardo KJ, Ostermann-Kelm SD | Date: 2020-06-29 | Outlet: Conservation Science and Practice 2020;e245. | Format: .PDF
Long-term ecological monitoring provides valuable and objective scientific information to inform management and decision making. In this paper we analyze 22 years of herpetofauna monitoring data from the Point Loma Ecological Conservation Area (PLECA), an insular urban reserve near San Diego, California. Our analysis showed that counts of individuals for one of the four most common terrestrial vertebrates declined, whereas counts for other common species increased or remained stable. Two species exhibited declines in adult body length, whereas biomass pooled over the five most common species increased over time and was associated with higher wet season precipitation. Although the habitat and vegetation at PLECA have remained protected and intact, we suspect that changes in arthropod communities may be driving changes in the abundance, growth, and development of insectivorous lizards. This study underscores the value of long-term monitoring for establishing quantitative baselines to assess biological changes that would otherwise go undetected.

E Muths
Papers & Reports Effects of Snowpack, Temperature, and Disease on Demography in a Wild Population of Amphibians
Click to copy
Authors: Muths E, Hossack BR, Grant EHC, Pilliod DS, Mosher BA | Date: 2020-06 | Outlet: Herpetologica | Format: .PDF
Understanding the demographic consequences of interactions among pathogens, hosts, and weather conditions is critical in determining how amphibian populations respond to disease and in identifying site-specific conservation actions that can be developed to bolster persistence of amphibian populations. We investigated population dynamics in Boreal Toads relative to abiotic (fall temperatures and snowpack) and biotic (the abundance of another anuran host and disease) characteristics of the local environment in Wyoming, USA. We used capture-recapture data and a multi-state model where state is treated as a hidden Markov process to incorporate disease state uncertainty and assess our a priori hypotheses. Our results indicate that snowpack during the coldest week of the winter is more influential to toad survival, disease transition probabilities, and the population-level prevalence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) in the spring, than temperatures in the fall or the presence of another host. As hypothesized, apparent survival at low (i.e., <25 cm) snowpack (0.22 [CI: 0.15–0.31]) was lower than apparent survival at high snowpack (90.65 [CI: 0.50–0.78]). Our findings highlight the potential for local environmental factors, like snowpack, to influence disease and host persistence, and demonstrate the ecological complexity of disease effects on population demography in natural environments. This work further emphasizes the need for improved understanding of how climate change may influence the relationships among pathogens, hosts, and their environment for wild animal populations challenged by disease.
Juvenile California newt ([I]Taricha torosa[/I]) from southern California.  The larval stage is very sensitive to rainfall and water availability.
Juvenile California newt (Taricha torosa) from southern California. The larval stage is very sensitive to rainfall and water availability.
Papers & Reports Amphibian responses in the aftermath of extreme climate events
Click to copy
Authors: Bucciarelli G M, Clark M, Delaney K S, Riley S P D, Shaffer H B, Fisher R N, Honeycutt R L, Kats L B | Date: 2020-02-25 | Outlet: Scientific Reports 10:3409 | Format: .PDF
Climate change-induced extinctions are estimated to eliminate one in six known species by the end
of the century. One major factor that will contribute to these extinctions is extreme climatic events.
Here, we show the ecological impacts of recent record warm air temperatures and simultaneous peak
drought conditions in California. From 2008–2016, the southern populations of a wide-ranging endemic
amphibian (the California newt, Taricha torosa) showed a 20% reduction to mean body condition and
significant losses to variation in body condition linked with extreme climate deviations. However,
body condition in northern populations remained relatively unaffected during this period. Range-wide
population estimates of change to body condition under future climate change scenarios within the
next 50 years suggest that northern populations will mirror the loss of body condition recently observed
in southern populations. This change is predicated on latter 21st century climate deviations that
resemble recent conditions in Southern California. Thus, the ecological consequences of climate change
have already occurred across the warmer, drier regions of Southern California, and our results suggest
that predicted climate vulnerable regions in the more mesic northern range likely will not provide
climate refuge for numerous amphibian communities.
View All Papers & Reports on Climate Change

View All Data Releases on Climate Change
* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.