Climate Change

Freshwater wetlands provide critical habitat for a diverse array of organisms including many amphibians. Yet, under the continued impacts of water diversions and the newer threats of climate change, these habitats are among the most imperiled ecosystems on Earth. Climate change has the potential to alter many sources of water critical to the habitats amphibians need, especially those associated with breeding and development. Potential changes include: change in timing and availability of water from glacier melt, snow and rain timing and amount; persistence of vernal pools and seasonal wetlands; altered evapotranspiration rates; and reduced stream flows and groundwater recharge rates.

Other ecosystem components likely to change in response to climate change include the timing and frequency of fires, the spread of invasive plants and animals, and microclimates in which the animals live.

Ground-truthing.
Robert Fisher and Stacey Hathaway (ARMI) ground-truthing potential desert-frog breeding sites selected using remote sensing of soil characteristics derived from known breeding site. Photo by: C. Schwalbe.

Climate Change - ARMI Papers & Reports

Data Release Calculations of BioLake climate data
Authors: Ryan C Burner; Richard E Erickson
Date: 2022-11-01 | Outlet: USGS GitLab
Climate data allow people to examine species distributions and possible distributions. This script takes ERA5-Land climate estimates (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) for precipitation and lake temperature and processes them to create summary climate layers for use with biological organisms in lakes. This code could be modified to use a different subset of years.

These BioLake raster data provide global estimates (~10.0 x 12.4 km resolution) of twelve bioclimatic variables based on estimated lake temperature. Eleven of these twelve variables (BioLake01 - BioLake11) are estimated for each of three lake strata: lake mix (surface) layer, lake bottom, and total lake water column. These eleven variables correspond to CHELSA (Climatologies at high resolution for the earth's land surface areas) bioclimatic variables BIO1 - BIO11, except that these BioLake variables are based on lake water temperature and CHELSA BIO1 - BIO11 variables are based on air temperature. CHELSA BIO is also calculated a finer spatial resolution (~1 x 1 km). The twelfth variable (BioLake20; months with non-zero ice cover) does not correspond to any CHELSA bioclimatic variable. The data are supplied as a multi-layer raster (.grd) file in the World Mollweide projection, accompanied by a header file (.gri) with layer names.

For BioLake layer download, see https://doi.org/10.5066/P96QLN5Y
Data Release BioLake bioclimatic variables based on ERA5-Land lake temperature estimates 1991-2020
Authors: Ryan C Burner; Richard E Erickson
Date: 2022-01-21 | Outlet: USGS ScienceBase
These BioLake raster data provide global estimates (~10.0 x 12.4 km resolution) of twelve bioclimatic variables based on estimated lake temperature. Eleven of these twelve variables (BioLake01 - BioLake11) are estimated for each of three lake strata: lake mix (surface) layer, lake bottom, and total lake water column. These eleven variables correspond to CHELSA (Climatologies at high resolution for the earth's land surface areas) bioclimatic variables BIO1 - BIO11, except that these BioLake variables are based on lake water temperature and CHELSA BIO1 - BIO11 variables are based on air temperature. CHELSA BIO is also calculated a finer spatial resolution (~1 x 1 km). The twelfth variable (BioLake20; months with non-zero ice cover) does not correspond to any CHELSA bioclimatic variable. The data are supplied as a multi-layer raster (.grd) file in the World Mollweide projection, accompanied by a header file (.gri) with layer names.
Papers & Reports Winter severity affects occupancy of spring- and summer-breeding anurans across the eastern United States
Authors: Sara R weiskopf; Alexey N Shiklomanov; Laura Thompson; Sarah Wheedleton; Evan H Campbell Grant
Outlet: Diversity and Distributions
Climate change is an increasingly important driver of biodiversity loss. The ectothermic nature of amphibians may make them particularly sensitive to changes in normal temperature and precipitation regimes, exacerbating global declines from other threats. In this study, we used large-scale citizen science data from the eastern half of the United States to assess how variation in winter severity influenced occupancy dynamics of 11 anuran species. We found that most species had increased occupancy in years with greater than average snow cover and warmer than average mean winter temperatures. Surprisingly, we found that climatic conditions in winter affected occupancy dynamics of both spring and summer breeding species, indicating that changing winter conditions may have consequences for anuran species with varying life history characteristics. As the climate continues to change, expected reductions in snowpack may act as an additional stressor on already declining anuran populations, while milder winters may improve overwinter survival for some species.
View All Papers & Reports on Climate Change

View All Data Releases on Climate Change
* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.