ARMI » Topics » Species and their Ecology

Species and their Ecology


Mark Roth
M. Roth (ARMI) installing an acoustic recorder and water-level and water-temperature loggers at an amphibian breeding site in the St. Croix National Scenic Riverway in WI. Photo by: P. Boma.
» Phylum: Chordata
» Class: Amphibia
» Order: Anura (formerly Salientia): Frogs and toads
» Order: Caudata (formerly Urodela): Salamanders
» Order: Gymnophiona: Caecelians

The U.S. is home to approximately 287 of the world's estimated 6,000 amphibian species. The number of known species changes periodically as new species are discovered and new genetic techniques (e.g. molecular genetics) allow scientists to distinguish among cryptic species.

Brad Glorioso
B. Glorioso (ARMI) with American bullfrog in Atchafalaya Basin, LA conducting amphibian surveys. Photo by: L. Elston.

Amphibian Taxonomy

» Scientific and standard names of amphibians and reptiles of North America north of Mexico, with comments regarding confidence in our understanding. (Crother, B.I. (chair). 2008. Publisher: Society for the Study of Amphibians and Reptiles)

» Amphibian species of the world 5.4, an online reference. (Frost, D. 2010. Publisher: American Museum of Natural History)

» Standard common and current scientific names for North American amphibians, turtles, reptiles and crocodillians. (Collins, J.T., and T.W. Taggart. 2009. Publisher: Center for North American Herpetology)

ARMI conducts research on the natural history of species; writing reports and describing the ecology of America's amphibians. ARMI also collaborates with federal and state partners to design, implement, and evaluate management actions that benefit T&E and other imperiled amphibian species.

Federal and State Partners: Information about the status, management, and conservation of amphibians is found throughout the ARMI web site [e.g. Products Database and Topics Sections]. Please consult the "National Amphibian Atlas" to identify the approximate range of the species of interest.

Resources

National Amphibian Atlas.

ARMI Products on Species and their Ecology

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

This is an ARMI Product. Timing of first and last calls and median calling peaks for Pseudacris crucifer, and of the first call for Hyla chrysoscelis/versicolor, at six wetlands in the St. Croix National Scenic Riverway from 2008-2012
Authors: Sadinski W, Roth M | Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH.
To better understand relations of annual calling phenophases for Pseudacris crucifer, and of the first calls of the season for Hyla chrysoscelis/versicolor, to the timing of the start of the calling season, we compared these dynamics for six wetlands in the St. Croix National Scenic Riverway from 2008 to 2012. We installed an acoustic recorder at each site prior to the start of each calling season and programmed it to record for five minutes at the top of every hour until late summer. We then used the Songscape option in Songscope software to generate annual summaries of all acoustic files recorded at each site. We created contour plots of the summarized median dB values across bandwidths in each recording and then assessed individual calls and calling peaks by visually examining these plots to identify first (and last) calls via the unique call signatures for these two species. We examined individual five-minute recordings aurally and visually as necessary when sound images represented on the contour plots were confounded and to ensure that the calling peaks described below were dates when calling activity was relatively intense. We also determined the daily median dB levels for frequencies across 2900 to 3200 Hz during 2100 to 2300 h, the bandwidth that typically encompassed the primary energy peak in P. crucifer calls and a time period during which P. crucifer typically called most consistently throughout their calling season. We did this for each day from the date when P. crucifer first called during each year to the date when they last called during each year. Because calling activity could vary from one hour to the next, we integrated the area under the curve for the daily median dB levels from 2900 to 3200 Hz during 2100 to 2300 h. We removed dates when overlapping sounds from storms or other sources rendered comparisons to calls of P. crucifer inaccurate. We used the resultant set of integrands to represent the relative sound intensity (as an indicator of calling activity) for P. crucifer across those hours for each date. We then used these integrands to determine the three highest peak calling dates for this species and used the median of those three dates as the overall median peak date for each site in each year.

This is an ARMI Product. The eight-day interval during which amphibians first called annually at individual study wetlands across four study areas.
Authors: Sadinski W, Roth M | Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH
To help determine when winter conditions were changing to spring conditions annually in our four study areas, we determined the first eight-day interval (in accordance with the scale limitations of satellite data we used to assess the presence of snow) during which the first amphibian of the season called at each of our study wetlands in those areas. To do this, we examined contour plots of summaries of all the acoustic data we collected at that site in a given year to identify the unique call signatures of individual amphibian species by date and time. When necessary due to potential confounding on a contour plot, we also examined relevant individual five-minute recordings aurally and visually to confirm whether a call occurred. When we confirmed the date of the first call we recorded in a given season, we identified the eight-day interval in which that date fell, with the first such interval beginning on January 1 of each year.

This is an ARMI Product. Daily calling activity for Pseudacris crucifer at site SC4DAI2 in the St. Croix National Scenic Riverway from 2008 to 2012, as indicated by the results of integrating daily median dB values across 2900 to 3200 Hz and 2100 to 2300 h
Authors: Sadinski W, Roth M | Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH
To describe calling activity of Pseudacris crucifer in relation to temperature, precipitation, and wetland water levels, we programmed an acoustic recorder (Wildlife Acoustics) to sample seasonal amphibian calls remotely at study site SC4DAI2 in the St. Croix National Scenic Riverway from 2008 to 2012. We programmed the recorder to sample for five minutes at the top of every hour of every day from late winter/early spring through late summer. We used the Songscape option in Songscope software to generate annual summaries of all of our acoustic samples from SC4DAI2. These summaries included a median dB level for each prescribed frequency within each recording. Pseudacris crucifer, the spring peeper, inhabited SC4DAI2 and typically called over several weeks each year, depending upon weather conditions and surface-water availability. Most of the energy in their individual calls occurred between 2900 and 3200 Hz, which provided a unique acoustic signature compared with the other anurans that called from the site. We used this information as part of a case study to better understand how the daily calling activity of P. crucifer varied relative to air temperature, precipitation, and water depth at SC4DAI2 across years. We first determined the daily median dB levels for frequencies across 2900 to 3200 Hz during 2100 to 2300 h, a time period during which P. crucifer typically called throughout their calling season. We did this for each day from the date when P. crucifer first called each year to the date when they last called each year and considered any day in this range as one during which they potentially could call. Because calling activity could vary from one hour to the next, we integrated the area under the curve for the daily median dB levels from 2900 to 3200 Hz during 2100 to 2300 h. We removed dates when overlapping sounds from storms or other sources rendered comparisons to calls of P. crucifer inaccurate. We used the resultant set of integrands to represent the relative sound intensity (as an indicator of calling activity) for P. crucifer across those hours for each date. Those integrands are contained in this data set. These data enabled us to then compare daily integrand values with daily measurements of air temperature, precipitation totals, and water depth.