USGS - science for a changing world

Amphibian Research and Monitoring Initiative

ARMI » Topics » Drought


Lake Shasta Feb-Oct 2014 comparison.


Hydrologic Investigations

ARMI Products on Drought

* USGS neither sponsors nor endorses non-USGS web sites; per requirement "3.4.1 Prohibition of Commercial Endorsement."
* PDF documents require Adobe Reader or Google Chrome Browser for viewing.

This is an ARMI Product. Declines revisited: long-term recovery and spatial population dynamics of tailed frog larvae after wildfire
Authors: Hossack BR, Honeycutt RK | Outlet: Biological Conservation
Drought has fueled an increased frequency and severity of large wildfires in many ecosystems. Despite an increase in research on wildfire effects on vertebrates, the vast majority of it has focused on short-term (<5 yrs) effects and there is still little information on the time scale of population recovery for species that decline in abundance after fire. In 2003, a large wildfire in Montana (USA) burned the watersheds of four of eight streams that we sampled for larval Rocky Mountain tailed frogs (Ascaphus montanus) in 2001. Surveys during 2004?2005 revealed reduced abundance of larvae in burned streams relative to unburned streams, with greater declines associated with increased fire extent. Rocky Mountain tailed frogs have low vagility and have several unusual life-history traits that could slow population recovery, including an extended larval period (4 yrs), delayed sexual maturity (6?8 yrs), and low fecundity (<50 eggs/yr). To determine if abundance remained depressed since the 2003 wildfire, we repeated surveys during 2014?2015 and found relative abundance of larvae in burned and unburned streams had nearly converged to pre-fire conditions within two generations. The negative effects of burn extent on larval abundance weakened >58% within 12 yrs after the fire. We also found moderate synchrony among populations in unburned streams and negative spatial autocorrelation among populations in burned streams. We suspect negative spatial autocorrelation among spatially-clustered burned streams reflected increased post-fire patchiness in resources and different rates of local recovery. Our results add to a growing body of work that suggests populations in intact ecosystems tend to be resilient to habitat changes caused by wildfire. Our results also provide important insights into recovery times of populations that have been negatively affected by severe wildfire.

Content image.
N. Dotson  
This is an ARMI Product. Occurrence of Amphibians in Northern California Coastal Dune Drainages
Authors: Halstead BJ, Kleeman PM | Date: 2017-07 | Outlet: Northwestern Naturalist 98(2):91-100 | Format: URL
Many coastal dune ecosystems have been degraded by non-native dune vegetation, but these systems might still provide valuable habitat for some taxa, including amphibians. Because restoration of degraded dune systems is occurring and likely to continue, we examined the occurrence of amphibians in drainages associated with a coastal dune ecosystem degraded by invasive plants (European Beachgrass, Ammophila arenaria, and Iceplant, Carpobrotus edulis). We found that occupancy of 3 amphibian species (California Red-legged Frog, Rana draytonii; Sierran Treefrog, Hyliola sierra; and Rough-skinned Newt, Taricha granulosa) among 21 coastal dune drainages was high, with most coastal dune drainages occupied by all 3 species. Furthermore, reproduction of Sierran Treefrogs and California Red-legged Frogs was estimated to occur in approximately 1/2 and 1/3; of the drainages, respectively. The probability of occurrence of Rough-skinned Newts and pre-metamorphic life stages of both anurans decreased during the study, perhaps because of ongoing drought in California or precipitation-induced changes in phenology during the final year of the study. Maintaining structural cover and moist features during dune restoration will likely benefit native amphibian populations inhabiting coastal dune ecosystems.

This is an ARMI Product. Identifying small depressional wetlands and using a topographic position index to infer hydroperiod regimes for pond-breeding amphibians
Authors: Riley J, Calhoun D, Barichivich WB, Walls SC | Date: 2016-12-01
Small, seasonal pools and temporary ponds (<4.0ha) are the most numerous and biologically diverse wetlands in many natural landscapes. Thus, accurate determination of their numbers and spatial characteristics is beneficial for conservation and management of biodiversity associated with these freshwater systems. We examined the utility of a topographic position index (TPI) landscape classification to identify and classify depressional wetlands. We also assessed relationships between topographic characteristics and ponded duration of known wetlands to allow hydrological characteristics to be extended to non-monitored locations. Our results indicate that this approach was successful at identifying wetlands, but did have higher errors of commission (10%) than omission (5%). Additionally, the TPI procedure provided a reasonable means to correlate general ponded duration characteristics (long/short) with wetland topography. Although results varied by hydrologic class, permanent/long ponded duration wetlands were more often classified correctly (80%) than were short ponded duration wetlands (67%). However, classification results were improved to 100% and 75% for permanent/long and short ponded duration wetlands, respectively, by removing wetlands occurring on an abrupt marine terrace that erroneously inflated pond topographic characteristics. Our study presents an approach for evaluating wetland suitability for species or guilds that are associated with key habitat characteristics, such as hydroperiod.

Accessibility FOIA Privacy Policies and Notices logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: ARMI Webmaster
Page Last Modified: Saturday, August 19, 2017