Estimating the probability of movement and partitioning seasonal survival in an amphibian metapopulation

Authors: Erin Muths; Larissa L Bailey; Brad A Lambert; S Schneider
Contribution Number: 662

Movement of individuals has been described as one of the best studied, but least understood concepts in ecology. The magnitude of movements, routes, and probability of movement, has significant application to conservation. Information about movement can inform efforts to model species persistence and is particularly applicable in situations where specific threats (e.g., disease) may depend on the movement of hosts and potential vectors. We estimated the probability of movement (breeding dispersal and permanent emigration) in a metapopulation of 16 breeding sites for boreal toads (Anaxyrus boreas boreas). We used a multi-state mark-recapture approach unique in its complexity (16 sites over 18 years) to address questions related to these movements and variation in resident survival. We found that individuals had a 1-2% probability of dispersing in a particular year and that approximately 10-20% of marked individuals were transient and observed in the metapopulation only once. Resident survival probabilities differed by season, with 71-90% survival from emergence from hibernation through early post-breeding and > 97% survival from mid/late active season through hibernation. Movement-related probabilities are needed to predict species range expansions and contractions, estimate population and metapopulation dynamics, understand host-pathogen and native-invasive species interactions, and to evaluate the relative effects of proposed management actions.

Publication details
Published Date: 2018-12
Outlet/Publisher: Ecosphere
Media Format: .PDF

ARMI Organizational Units:
Rocky Mountains, Southern - Biology
Disease; Management; Species and their Ecology; Stressors
Place Names:
amphibians; ARMI; Bd; movement; survival
Notice: PDF documents require Adobe Reader or Google Chrome Browser (recommended) for viewing.