Staggered-entry analysis of breeding and occupancy dynamics of Arizona Toads from historically occupied habitats of New Mexico, USA

Authors: M J Forzley; Mason J Ryan; I M Latella; J T Giermakowski; Erin L Muths; Brent H Sigafus; Blake R Hossack
Contribution Number: 784

For species with variable phenology, it is often challenging to produce reliable estimates of population dynamics or changes in occupancy. The Arizona Toad (Anaxyrus microscaphus) is a southwestern USA endemic that has been petitioned for legal protection, but status assessments are limited by a lack of information on population trends. Also, timing and consistency of Arizona Toad breeding varies greatly, making it difficult to predict optimal survey times or effort required for detection. To help fill these information gaps, we conducted breeding season call surveys during 2013–2016 and 2019 at 86 historically occupied sites and 59 control sites across the species’ range in New Mexico. We estimated variation in mean dates of arrival and departure from breeding sites, changes in occupancy, and site-level extinction since 1959 with recently developed multi-season staggered-entry models, which relax the within-season closure assumption common to most occupancy models. Optimal timing of surveys in our study areas was approximately March 5 - March 30. Averaged across years, estimated probability of occupancy was https://0.58 (SE = 0.09) for historical sites and https://0.19 (SE = 0.08) for control sites. Occupancy increased from 2013 through 2019. Notably, even though observer error was trivial, annual detection probabilities varied from https://0.23 to https://0.75 and declined during the study; this means naïve occupancy values would have been misleading, indicating apparent declines in toad occupancy. Occupancy was lowest during the first year of the study, possibly due to changes in stream flows and conditions in many waterbodies following extended drought and recent wildfires. Although within-season closure was violated by variable calling phenology, simple multi-season models provided nearly identical estimates as staggered-entry models. Surprisingly, extinction probability was unrelated to the number of years since the first or last record at historically occupied sites. Collectively, our results suggest a lack of large, recent declines in occupancy by Arizona Toads in New Mexico, but we still lack population information from most of the species’ range.

Publication details
Published Date:
Outlet/Publisher: Copeia
Media Format:

ARMI Organizational Units:
Rocky Mountains, Northern - Biology
Southwest, Arizona - Biology
Drought; Monitoring and Population Ecology; Quantitative Developments; Species and their Ecology
Place Names:
New Mexico
amphibians; ARMI; behavior; bioacoustics; call surveys; colonization; conservation; detection; ecology; Endangered Species Act; extinction; monitoring; occupancy; population; research; stream; trends; water
Notice: PDF documents require Adobe Reader or Google Chrome Browser (recommended) for viewing.