Resilience of native amphibian communities following catastrophic drought: evidence from a decade of regional-scale monitoring

Authors: W Moss; T McDevitt-Galles; Erin Muths; S Bobzien; J Purificato; P TJ Johnson
Contribution Number: 785
Abstract/Summary

1. The increasing frequency and severity of drought has the potential to exacerbate existing global amphibian declines. However, interactions between drought and coincident stressors, coupled with high interannual variability in amphibian abundances, can mask the extent and underlying mechanisms of drought-induced declines. The application of dynamic occupancy modeling to longitudinal monitoring data estimates the effect of specific variables on population change, providing key insights into potential management strategies for drought resilience.
2. We synthesized a decade (2009 – 2019) of amphibian survey data from multiple monitoring programs across the California Bay Area and used occupancy modeling to estimate the influence of drought, invasive species, and land use on species’ persistence and colonization probabilities. The geographic and temporal scale of our dataset, consisting of 2574 surveys of seven species in 473 ponds, allowed us to quantify regional trends for an entire community of pond-breeding amphibians.
3. An extreme drought from 2012 – 2015 resulted in losses of breeding sites, with 51% of ponds drying in 2014 compared to <10% in non-drought years. Pond drying reduced persistence rates, and nearly every species exhibited reduced occupancy during the drought, with some species (American bullfrogs and California newts) declining by > 25%. Drought reduced occupancy via additional mechanisms beyond habitat loss; for example, lower spring precipitation (an important cue for breeding) was associated with reduced colonization.
4. During drought, native species’ persistence was higher in permanent relative to temporary ponds, even though these sites were also more likely to contain invasive fish and bullfrogs, which generally reduced native amphibian occupancy. Many of these permanent ponds dried during the worst year of drought, leading to extirpations of invasive species that appeared long-lasting. In contrast, native species rebounded quickly with returning rains and showed evidence of full recovery.
5. Synthesis and applications: Despite experiencing one of most severe droughts in a millennium, native species displayed high resilience. Due to longer recovery times by non-native relative to native species, drought presents a valuable management opportunity to remove invaders from key refugia, and we highlight the value of maintaining hydroperiod diversity to promote the persistence of multiple species.

Publication details
Published Date:
Outlet/Publisher:
Media Format: .PDF

ARMI Organizational Units:
Southwest, Southern California - Biology
Rocky Mountains, Southern - Biology
Topics:
Disease; Drought; Invasive Species; Management; Stressors
Place Names:
California
Keywords:
agriculture; amphibians; Chytridiomycosis; climate; conservation; disease; drought; ecology; fish; invasives
Notice: PDF documents require Adobe Reader or Google Chrome Browser (recommended) for viewing.