Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

283 record(s) found.

Papers & Reports Of toads and tolerance: Quantifying intraspecific variation in host resistance and tolerance to a lethal pathogen
Authors: Bennett Hardy; Erin Muths; W C Funk; Larissa L Bailey
Date: 2024-05-30 | Outlet: Journal of Animal Ecology
Due to the ubiquity of disease in natural systems, hosts have evolved strategies of disease resistance and tolerance to defend themselves from further harm once infected. Resistance strategies directly limit pathogen growth, typically leading to lower infection burdens in the host. A tolerance approach limits the fitness consequences caused by the pathogen but does not directly inhibit pathogen growth. Testing for intraspecific variation in wild host populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test for the relative importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden, and survival for eight weeks. We used a multi-state modeling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are highly tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also had higher probabilities of clearing infections and took an average of five days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that explain why population declines vary regionally across the species. We used a robust, multi-state framework to gain inference on typically hidden disease processes when testing for host tolerance or resistance and demonstrated that describing an entire species as ‘tolerant’ or ‘resistant’ is unwise without testing for intraspecific variation in host defenses.
Papers & Reports Hiding in plain sight: federally protected Ringed Map Turtles, Graptemys oculifera, found in a new river system
Authors: Brad M Glorioso; Will Selman; B R Kreiser; Aidan Ford
Date: 2024-04-30 | Outlet: Herpetological Conservation and Biology
Understanding the geographical range of a species is essential to successful conservation and management, but their ranges are not always fully known. Ringed Map Turtles, Graptemys oculifera, have been federally listed as a threatened species since 1986, and they have long been considered endemic to the Pearl River system of central Mississippi and southeastern Louisiana. By way of a 2021 citizen scientist observation, a new G. oculifera population was discovered in the Bogue Falaya, a river system that is west of and isolated from the Pearl River system. Genetic analyses of 23 individuals from the Bogue Falaya demonstrate their distinctiveness relative to sites in the Pearl River, suggesting it is a natural rather than introduced population. Therefore, G. oculifera should no longer be considered endemic to the Pearl River system, and this Bogue Falaya population of G. oculifera may warrant the designation of a distinct population segment under the Endangered Species Act. A thorough assessment of the distribution, abundance, and conservation threats to the Bogue Falaya population of G. oculifera is needed as well as surveys of surrounding systems. This discovery of a long federally protected species in the city limits of Covington, Louisiana, underscores the need for more surveys to fully understand species distributions and documents how citizen scientists can advance scientific knowledge.
Papers & Reports Critical review of the phytohemagglutinin assay for assessing amphibian immunity
Authors: Lauren Hawley; Kelly L Smalling; Scott Glaberman
Date: 2023-12-12 | Outlet: Conservation Physiology
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, from genetics and stress to pollution and climate change, can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the field and in the laboratory. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians in order to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians as a whole. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Papers & Reports Geographic Distribution. Storeria occipitomaculata
Authors: Aidan G Phillips; William C Carroll; Brad M Glorioso
Date: 2022-12-01 | Outlet: Herpetological Review
Geographic distribution parish record for this snake species
Papers & Reports Adjacent and downstream effects of forest harvest on the distribution and abundance of larval headwater stream amphibians in the Oregon Coast Range
Authors: Adam Duarte; Nathan D Chelgren; Jennifer C Rowe; Christopher A Pearl; Sherri L. Johnson; Michael J Adams
Date: 2023-07-21 | Outlet: Forest Ecology and Management
Forest harvest is a primary landscape-scale management action affecting riparian forests. Although concerns about impacts of forest harvest on stream amphibians is generally limited to areas adjacent to harvest, there is a paucity of information regarding potential downstream effects of forest harvest on these species. We designed a before-after, control-impact (BACI) experiment to quantify potential impacts of clearcut logging that included 12-m buffers or smaller variable-width buffers on the distribution and abundance of headwater stream amphibians in adjacent and downstream areas. We sampled larval coastal tailed frogs (Ascaphus truei), coastal giant salamanders (Dicamptodon tenebrosus), and Columbia torrent salamanders (Rhyacotriton kezeri) across 3,915 sampling occasions that spanned 13 study reaches in 2008–2011 (pre-harvest) and 2013–2016 (post-harvest) as part of the Trask River Watershed Study in the Oregon Coast Range, U.S.A. We analyzed these data using occupancy models to estimate occupancy and (when possible) relative abundance, while accounting for various sources of imperfect detection. All species exhibited reduced occupancy adjacent to clearcuts with variable-width buffers (odds ratios [ORs] ranged = 0.24–0.48), and these negative impacts were not always diminished when increasing the buffer size to 12 m (ORs ranged = 0.20–3.56). Dicamptodon tenebrosus was the only species to have occupancy impacted in downstream areas, and this negative impact was related to clearcut logging with uniform 12-m buffers (OR = 0.60). This species was also the only species to have abundance negatively impacted by forest harvest in downstream areas (OR = https://0.41 with uniform 12-m buffers, OR = https://0.38 with variable-width buffers), albeit impacts to abundance were not evaluated for R. kezeri. Ascaphus truei abundance increased in areas downstream of clearcut logging with uniform 12-m buffers (OR = 2.92). Although we found the direction and magnitude of responses varied by species, our study confirms that clearcut logging can have negative impacts on amphibians that inhabit the adjacent stream areas. Perhaps more importantly, we also found that forest harvest can have negative effects on stream amphibians downstream of the harvested area and that increasing the buffer size to 12 m did not necessarily diminish these impacts in adjacent and downstream areas. Altogether, our study provides a nuanced picture of adjacent and downstream effects of forest harvest on three endemic headwater stream amphibians, and our findings demonstrate that forest management practices should consider downstream effects on aquatic taxa when assessing the impact of harvesting trees near headwater streams.
Papers & Reports Identifying drivers of population dynamics for a stream breeding amphibian using time series of egg mass counts
Authors: Jonathan P Rose; Sarah J Kupferberg; Ryan A Peek; Don Ashton; James B Bettaso; Steven Bobzien; Ryan M Bourque; Koen GH Breedveld; Alessandro Catenazzi; Joseph E Drennan; Earl Gonsolin; Marcia Grefsrud; Andrea E Herman; Matthew R House; Matt R Kluber; A J Lind; Karla R Marlow; Alan Striegle; Michael G van Hattem; Clara A Wheeler; Jeffery T Wilcox; Kevin D Wiseman; Brian J Halstead
Date: 2023-08-24 | Outlet: Ecosphere: Volume14, Issue 8
The decline of amphibian populations is one of the starkest examples of the biodiversity crisis. For stream-breeding amphibians, alteration of natural flow regimes by dams, water diversions, and climate change have been implicated in declines and extirpations. Identifying drivers of amphibian declines requires long time series of abundance data because amphibian populations can exhibit high natural variability. Multiple population viability analysis (MPVA) models integrate abundance data and share information from different populations to estimate how environmental factors influence population growth. Flow alteration has been linked to declines and extirpations in the Foothill Yellow-Legged Frog (Rana boylii), a stream-breeding amphibian native to California and Oregon. To date, no study has jointly analyzed abundance data from populations throughout the range of R. boylii in an MPVA model. We compiled time series of egg mass counts (an index of adult female abundance) from R. boylii populations in 36 focal streams and fit an MPVA model to quantify how streamflow metrics, stream temperature, and surrounding land cover affect population growth. We found population growth was positively related to stream temperature and was higher in the years following a wet year with high total annual streamflow. Density-dependence was weakest (i.e., carrying capacity was highest) for streams with high seasonality of streamflow and intermediate rates of change in streamflow during the spring. Our results highlight how altered streamflow can further increase the risk of decline for R. boylii populations. Managing stream conditions to better match natural flow and thermal regimes would benefit the conservation of R. boylii populations.
Papers & Reports Broad-scale Assessment of Methylmercury in Adult Amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; Colleen S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science & Technology
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats, including contaminants. While the bi-phasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used non-lethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67) whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broadscale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for non-lethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify potential threats of MeHg to amphibians.
Papers & Reports Elevated road segment (ERS) passage design may provide enhanced connectivity for amphibians, reptiles, and small mammals
Authors: Cheryl S Brehme; Stephanie Barnes; Brittany Ewing; Philip Gould; Cassie Vaughan; Michael Hobbs; Charles Tornaci; Sarah Holm; Hanna Sheldon; Jon Fiutak; Robert N Fisher
Date: 2023-05-24 | Outlet: Frontiers in Ecology and Evolution 11:1145322
Introduction: Designs for safe and effective road crossing structures for small animals are typically under-road microtunnels and culverts which have varying levels of effectiveness reported in the scientific literature. Many species, particularly migratory amphibians, may have limited ability to find and use passages if they are too far apart, resulting in substantial barrier effects.

Methods: We designed a novel open elevated passage (elevated road segment: ERS), similar to a low terrestrial bridge, that could theoretically be built to any length based upon species needs and movement characteristics. A 30 m length prototype ERS was installed along a forest road with a history of amphibian road mortality in Sierra National Forest, Fresno County, CA, USA. From 2018 to 2021, we monitored small animal activity under the ERS in relation to surrounding roadside and forest habitats using active infrared cameras.

Results: We documented a total of 8,815 unique use events, using species specific independence criteria, across 22 species of amphibians (3), reptiles (4), and small mammals (15). Poisson regression modeling of taxonomic group activity under the ERS, roadside and forest, showed that amphibian activity was highest in the forest habitat, no differences were observed for reptiles, and small mammal activity was highest under the ERS. However, mean activity estimates under the ERS were equal to or greater than the open roadside habitat for all 22 species, suggesting that adding cover objects, such as downed logs and vegetation may further enhance passage use.

Discussion: Overall, results showed that the design of the ERS crossing has potential to provide high connectivity for a wide range of amphibian, reptile, and small mammal species while reducing road mortality. ERS systems can also be used in areas with challenging terrain and other hydrological and environmental constraints. Incorporating current road ecology science, we provide supplemental ERS concept designs for secondary roads, primary roads and highways to help increase the options available for road mitigation planning for small animals.
Papers & Reports By land, air, and water – USGS science supporting fish and wildlife migrations throughout North America
Authors: Mona Khalil; Mark Wimer; David Hu; Michael J Adams; Melanie Steinkamp; Suzanna C Soileau
Date: 2022-06-22
Countless species of animals—big game, birds, bats, insects, amphibians, reptiles, and fish—migrate to reach suitable habitats to feed, reproduce, and raise their young. Animal migrations developed over millennia commonly follow migration corridors—unique routes for each species—to move among seasonal habitats. Changes along those corridors, whether from human development (buildings, roads, dams) or from natural disturbances (for example, climate change, drought, fire, flooding, or invasive species), can make them harder to navigate. The U.S. Geological Survey’s Ecosystems Mission Area provides science that assists land managers in mapping, enhancing, protecting, and reconnecting migration corridors critical for diverse fish and wildlife populations that migrate, such as Odocoileus hemionus (mule deer) and Antilocapra americana (pronghorn), trout and salmon, salamanders, tortoises, bats, and Danaus plexippus (monarch butterflies).
Papers & Reports Broad-scale assessment of methylmercury in adult amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; C S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science and Technology 57:17511-17521
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67), whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.
Papers & Reports Looking ahead, guided by the past: The role of U.S. national parks in amphibian research and conservation
Authors: Brian J Halstead; Andrew M Ray; Erin Muths; Evan HC Grant; Rob L Grasso; Michael J Adams; Katy S Delaney; Jane Carlson; Blake R Hossack
Date: 2022-03 | Outlet: Journal of Ecological Indicators 136: 108631
Protected areas like national parks are essential elements of conservation because they limit human influence on the landscape, which protects biodiversity and ecosystem function. The role of national parks in conservation, however, often goes far beyond limiting human influence. The U.S. National Park Service and its system of land units contribute substantively to conservation by providing protected lands where researchers can document trends in species distributions and abundances, examine characteristics important for generating these trends, and identify and implement conservation strategies to preserve biodiversity. We reviewed the contribution of U.S. national parks to amphibian research and conservation and highlight important challenges and findings in several key areas. First, U.S. national parks were instrumental in providing strong support that amphibian declines were real and unlikely to be simply a consequence of habitat loss. Second, research in U.S. national parks provided evidence against certain hypothesized causes of decline, like UV-B radiation, and evidence for others, such as introduced species and disease. However, describing declines and identifying causes contributes to conservation only if it leads to management; importantly, U.S. national parks have implemented many conservation strategies and evaluated their effectiveness in recovering robust amphibian populations. Among these, removal of invasive species, especially fishes; conservation translocations; and habitat creation and enhancement stand out as examples of successful conservation strategies with broad applicability. Successful management for amphibians is additionally complicated by competing mandates and stakeholder interests; for example, past emphasis on increasing visitor enjoyment by introducing fish to formerly fishless lakes had devastating consequences for many amphibians. Other potential conflicts with amphibian conservation include increasing development, increased risk of introductions of disease and exotic species with increased visitation, and road mortality. Decision science and leveraging partnerships have proven to be key components of effective conservation under conflicting mandates in national parks. As resource managers grapple with large-scale drivers that are outside local control, public-private partnerships and adaptive strategies are increasing in importance. U.S. national parks have played an important role in many aspects of identifying and ameliorating the amphibian decline crisis and will continue to be essential for the conservation of amphibians in the future.
Papers & Reports Population Dynamics of the Threatened Oregon Spotted Frog (Rana pretiosa) Before and After Drought Mitigation
Authors: Jennifer C Rowe; Christopher A Pearl; Adam Duarte; Brome McCreary; Michael J Adams
Date: 2023-09-22 | Outlet: The Journal of Wildlife Management
Amphibians are among the most sensitive taxa to climate change, and species inhabiting arid and semiarid landscapes at the extremes of their range are especially vulnerable to drought. The Jack Creek, Oregon, USA, population of Oregon spotted frogs (Rana pretiosa) faces unique challenges because it occupies the highest elevation site in the species' extant range and one that has been transformed by loss of American beavers (Castor canadensis[/]), which historically maintained open water. We evaluated the effects of drought mitigation (addition of excavated ponds) on relationships between local and regional water availability, inactive legacy beaver dams, and Oregon spotted frog population dynamics in the Jack Creek system. We conducted egg mass surveys and capture-mark-recapture sampling at a treatment reach with excavated ponds and 3 reference reaches over 13 years; surveys spanned a period before and after pond excavation at the treatment and 1 primary comparison reference reach. We analyzed data using a combination of robust design capture-mark-recapture estimators and generalized linear mixed models to characterize population dynamics. Adult Oregon spotted frog survival was approximately 19.5% higher at the treatment reach than the primary reference reach during the study period. Annual survival was most strongly associated with late summer vegetation greenness, a proxy for water availability, and males had higher survival than females. Among the 4 study reaches, the treatment reach consistently had higher late summer vegetation greenness, and the hydrology functioned more independently of regional precipitation patterns relative to the reference reaches; however, these dynamics were not linked to pond excavation. Breeding was concentrated in 2 legacy beaver ponds that were deepened by excavation during the study compared to an unexcavated beaver pond, 2 excavated ponds without legacy beaver dams, and 9 reference ponds. These results point to the benefit of enhancing existing beaver structures and indicate that management actions aimed at maintaining surface water for breeding in spring and saturated soils and ponded water for adults in late summer would benefit this unique population of Oregon spotted frogs in the face of drought.
Papers & Reports Research Needs to Inform Amphibian Conservation in the Anthropocene
Authors: Evan HC Grant; Staci M Amburgey; Brian Gratwicke; Victor Acosta Chaves; Anat M Belasen; David Bickford; Carsten Bruhl; Natalie E Calatayud; Nick Clemann; Simon Clulow; Jeff Dawson; David A DeAngelis; Kenneth C Dodd; Annette Evans; Gentile Francesco Ficetola; Mattia Falaschi; Sergio Gonzalez-Mollinedo; D M Green; Roseanna Gamlen-Greene; Richard A Griffiths; Brian J Halstead; Craig Hassapakis; Geoffrey Heard; Catharina Karlsson; Tom Kirschey; Brittany A Kosch; Sophia Kusterko Novaes; Luke Linhoff; John C Maerz; Brittany A Mosher; Katherine M O'Donnell; Leticia M Ochoa-Ochoa; J D Roberts; A Silla; Tariq Stark; Jeanne Tarrant; R Upton; Judit Voros; Erin Muths
Date: 2023 | Outlet: Conservation Science and Practice
The problem of global amphibian declines has prompted extensive research over the last three decades; initially the focus was on identifying and characterizing the extent of the problem, but more recently efforts have shifted to evidence-based research designed to improve conservation outcomes. Using input from participants at the 9th World Congress of Herpetology, a US Geological Survey Powell Center symposium, amphibian listservs, the IUCN Assisted Reproductive Technologies and Gamete Biobanking group, and respondents to a survey, we developed a list of 25 priority research questions for amphibian conservation at this stage of the Anthropocene. These research needs represent critical knowledge gaps for amphibian conservation.
Papers & Reports Compensatory recruitment unlikely in high elevation amphibian populations challenged with disease
Authors: Bennett Hardy; Erin Muths; Brad A Lambert; S C Schneider; W C Funk; Larissa L Bailey
Date: 2022-07-12 | Outlet: Journal of Applied Ecology
1. Understanding the causes of population variation in host response to disease, and the mechanisms of persistence, can serve as vital information for species conservation. One such mechanism of population persistence that has gained support is the demographic process of compensatory recruitment. Host populations may persist by increasing recruitment to compensate for reduced survival due to infection, thus limiting the negative effects of the disease on population trajectories. However, high elevation populations are inherently vulnerable to stochastic processes and may be limited in their ability to exhibit compensatory recruitment relative to lower elevation populations.
2. We use long-term mark-recapture data from five populations of boreal toads (Anaxyrus boreas boreas ), across an elevational gradient in Colorado, before and after pathogen arrival to assess whether populations can persist with Batrachochytrium dendrobatidis (Bd) via compensatory recruitment.
3. Prior to pathogen arrival, we found a life history tradeoff between survival and recruitment across elevations, where high elevation toads have high survival but lower recruitment and vice versa at lower elevations.
4. Pathogen arrival had a strong negative effect on apparent annual survival and recruitment leading to negative population growth rates and dramatically reduced host abundances. The data did not support the occurrence of compensatory recruitment.
5. Synthesis and applications. Our unique dataset indicates that demographic responses to pathogens may be environmentally (i.e., elevationally) context-dependent and highlights the value of long-term monitoring. We recommend that practitioners verify that potential persistence mechanisms occur across multiple populations and relevant environmental gradients to counter any assumptions of the mechanism existing species-wide. Quantifying variation in population responses to disease will aid in understanding the bounds of such persistence mechanisms and identify particularly vulnerable populations where mechanisms are non-existent.
Papers & Reports Revisiting conservation units for the endangered mountain yellow-legged frog species complex (Rana muscosa, Rana sierrae) using multiple genomic methods
Authors: Allison Q Byrne; Andrew P Rothstein; Lydia L Smith; Hannah Kania; Roland A Knapp; Danial M Boiano; Cheryl J Briggs; Adam R Backlin; Robert N Fisher; Erica B Rosenblum
Date: 2023-09-29 | Outlet: Conservation Genetics https://doi.org/10.1007/s10592-023-01568-5
Insights from conservation genomics have dramatically improved recovery plans for numerous endangered species. However, most taxa have yet to benefit from the full application of genomic technologies. The mountain yellow-legged frog species complex, Rana muscosa and Rana sierrae, inhabits the Sierra Nevada mountains and Transverse/Peninsular Ranges of California and Nevada. Both species have declined precipitously throughout their historical distributions. Conservation management plans outline extensive ongoing recovery efforts but are still based on the genetic structure determined primarily using a single mitochondrial sequence. Our study used two different sequencing strategies – amplicon sequencing and exome capture – to refine our understanding of the population genetics of these imperiled amphibians. We used buccal swabs, museum tissue samples, and archived skin swabs to genotype frog populations across their range. Using the amplicon sequencing and exome capture datasets separately and combined, we document five major genetic clusters. Notably, we found evidence supporting previous species boundaries within Kings Canyon National Park with some exceptions at individual sites. Though we see evidence of genetic clustering, especially in the R. muscosa clade, we also found evidence of some admixture across cluster boundaries in the R. sierrae clade, suggesting a stepping-stone model of population structure. We also find that the southern R. muscosa cluster had large runs of homozygosity and the lowest overall heterozygosity of any of the clusters, consistent with previous reports of marked declines in this area. Overall, our results clarify management unit designations across the range of an endangered species and highlight the importance of sampling the entire range of a species, even when collecting genome-scale data.
Papers & Reports Winter severity affects occupancy of spring- and summer-breeding anurans across the eastern United States
Authors: Sara R weiskopf; Alexey N Shiklomanov; Laura Thompson; Sarah Wheedleton; Evan HC Grant
Date: 2022-08-09 | Outlet: Diversity and Distributions
Climate change is an increasingly important driver of biodiversity loss. The ectothermic nature of amphibians may make them particularly sensitive to changes in normal temperature and precipitation regimes, exacerbating global declines from other threats. In this study, we used large-scale citizen science data from the eastern half of the United States to assess how variation in winter severity influenced occupancy dynamics of 11 anuran species. We found that most species had increased occupancy in years with greater than average snow cover and warmer than average mean winter temperatures. Surprisingly, we found that climatic conditions in winter affected occupancy dynamics of both spring and summer breeding species, indicating that changing winter conditions may have consequences for anuran species with varying life history characteristics. As the climate continues to change, expected reductions in snowpack may act as an additional stressor on already declining anuran populations, while milder winters may improve overwinter survival for some species.
Papers & Reports Cryptic declines of small, cold-water specialists highlight potential vulnerabilities of headwater streams as climate refugia
Authors: Blake R Hossack; M LeMoine; Emily B Oja; Lisa A Eby
Date: 2023 | Outlet: Biological Conservation
Increasing temperatures and climate-driven disturbances like wildfire are a growing threat to many species,
including cold-water specialists. Montane areas and cold streams are often considered climate refugia that buffer
communities against change. However, climate refugia are often species-specific, and despite growing awareness
that life histories and habitat requirements shape responses to change, small or non-game species are often
under-represented in monitoring and planning programs. A recent study in Montana, USA, revealed much larger
warming-related declines in occupancy for small, non-game slimy sculpin (Cottus cognatus) between 1993 and
1995 and 2011–2013 than for two socially valued salmonid fishes that shape regional conservation efforts. To
broaden insight into climate change vulnerabilities of headwater stream communities, we analyzed data for
Rocky Mountain tailed frogs (Ascaphus montanus) that were collected during those same electrofishing surveys
for fishes from 241 stream reaches. Tailed frogs occupy small, cold streams and have several life-history traits
that make them sensitive to environmental change. We used a Bayesian framework to estimate occupancy,
colonization, and extinction dynamics relative to forest canopy, estimated stream temperature, and wildfire
effects. Tailed frog occupancy decreased by 19 % from 1993 to 1995 to 2011–2013. Changes in occupancy were
linked with increased extinction and reduced colonization where there were fire-driven reductions in canopy
cover, and reduced colonization of stream reaches that warmed on average 0.8 ?C during the study. Our results
highlight extensive extirpations for oft-overlooked species and emphasize the importance of including species
with diverse habitat requirements and life histories in conservation planning.
Papers & Reports Hot, wet, and rare: modeling the occupancy dynamics of the narrowly distributed Dixie Valley Toad
Authors: Jonathan P Rose; Patrick M Kleeman; Brian J Halstead
Date: 2022-08-29 | Outlet: Wildlife Research
Small population sizes and no possibility of metapopulation rescue put narrowly distributed endemic species under elevated risk of extinction from anthropogenic change. Desert spring wetlands host many endemic species that require aquatic habitat and are isolated by the surrounding xeric terrestrial habitat. Aims. We sought to model the occupancy dynamics of the Dixie Valley toad (Anaxyrus williamsi), a recently described species endemic to a small desert spring wetland complex in Nevada, USA. Methods. We divided the species’ range into 20 m × 20 m cells and surveyed for Dixie Valley toads at 60 cells during six primary periods from 2018 to 2021, following an occupancy study design. We analysed our survey data by using a multi-state dynamic occupancy model to estimate the probability of adult occurrence, colonisation, site survival, and larval occurrence and the relationship of each to environmental covariates. Key results. The detection probabilities of adult and larval toads were affected by survey length and time of day. Adult Dixie Valley toads were widely distributed, with detections in 75% of surveyed cells at some point during the 3-year study, whereas larvae were observed only in 20% of cells during the study. Dixie Valley toad larvae were more likely to occur in cells far from spring heads with a high coverage of surface water, low emergent vegetation cover, and water temperatures between 20°C and 28°C. Adult toads were more likely to occur in cells with a greater coverage of surface water and water depth >10 cm. Cells with more emergent vegetation cover and surface water were more likely to be colonised by adult toads. Conclusions. Our results showed that Dixie Valley toads are highly dependent on surface water in both spring and autumn. Adults and larvae require different environmental conditions, with larvae occurring farther from spring heads and in fewer cells. Implications. Disturbances to the hydrology of the desert spring wetlands in Dixie Valley could threaten the persistence of this narrowly distributed toad.
Papers & Reports Testing Assumptions in the Use of PIT Tags to Study Movement of Plethodon Salamanders
Authors: S C Sterrett; T D Dubreiul; M O'Donnell; Adrianne B Brand; Evan HC Grant
Outlet: Journal of Herpetology
Studying the movements of organisms that live underground for at least a portion of their life history is challenging, given
the state of current technology. Passive integrated transponders (PIT tags) provide a way to individually identify and, more recently,
study the movement of smaller animals, including those that make subterranean movements. However, there are widespread
assumptions of the use of PIT tags that remain problematic. We tested the effects of PIT-tag implantation on growth and survival, along
with the effects of electromagnetic fields for reading PIT tags on behavior, of the smallest salamander that has been PIT-tagged: the Red-
Backed Salamander. We found no effect of PIT tags on growth or survival. Using a mesocosm experiment, we also found that
electromagnetic effects associated with reading PIT tags, had no effect on salamander behavior. Further, we describe a novel PIT antenna
and soil mesocosm experimental arena for studying belowground movements of woodland salamanders. Collectively, these studies
suggest that the use of PIT tags do not influence the growth, survival, or behavior of Red-Backed Salamanders. Given the challenges of
studying salamanders that live underground and the impending changes in climate and landscapes, this research suggests that PIT tags
remain a viable tool for studying the movement ecology of salamanders under global change.
Papers & Reports Optimizing Survey Design for Shasta Salamanders (Hydromantes spp.) to Estimate Occurrence in Little-Studied Portions of their Range
Authors: Brian J Halstead; Patrick M Kleeman; Graziella V DiRenzo; Jonathan P Rose
Date: 2022-08 | Outlet: Journal of Herpetology
Shasta salamanders (collectively, Hydromantes samweli, H. shastae, and H. wintu; hereafter Shasta salamander) are endemic to northern California in the general vicinity of Shasta Lake reservoir. Although generally associated with limestone, they have repeatedly been found in association with other habitats, calling into question the distribution of the species complex. Further limiting our knowledge of the species’ distributions is that they are only active or available for sampling on the soil surface for a small portion of the year, and detection probabilities for the species have never been estimated. We developed and implemented a survey protocol designed to estimate detection, availability, and occurrence probabilities from December 2019 through March 2020. We provide inference on Shasta salamander occurrence in portions of their range that have received little survey effort. We found that Shasta salamander occurrence was positively associated with the percent cover of embedded rock, and their availability (i.e., probability of being active on the soil surface during sampling) was positively related to relative humidity. The probability of occurrence of Shasta salamanders in our study area was low, and our winter-to-spring survey protocol was effective for estimating detection, availability, and occurrence probabilities in the study area and at specific sites. We suggest that conducting replicate surveys that quantify animal availability and detection probabilities will facilitate a better understanding of the habitat associations of Shasta salamanders and other rare species that might often be unavailable for detection