Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

106 record(s) found.

Papers & Reports Assessing amphibian richness, rarity, threats, and conservation prospects for U.S. national park network [UPDATE TITLE]
Authors: Benjamin Lafrance; Andrew M Ray; Michael T Tercek; Robert N Fisher; Blake R Hossack
Date: 2024-11 | Outlet: npj Biodiversity
We assessed amphibian diversity, rarity, and threats across the U.S. National Park System, which covers 3.5% of the U.S. and 12% of federal lands. At least 230 of 354 (65%) amphibian species native to the U.S. occur in parks. Of the species documented in parks, 17% are considered at-risk globally and 20% are uncategorized, reflecting still-widespread data deficiencies. Parks in the Northwest and Northeast accumulated species most quickly (i.e., steepest species?area relationships). Non-native crayfishes and amphibians occur within 50 km of 60% and 25% of parks, respectively, illustrating the broad threat of non-native predators. Projected mid-century (2040–2069) changes in climatic water deficit, based on 25 climate futures, produced an expected 34% increase in dryness across all parks in the contiguous U.S. territory. Our analyses highlight the extent and regional differences in current and future threats and reveal gaps in species protection, but also reveal opportunities for targeted expansion and active management.
Data Release Mercury concentrations in amphibian tissues across the United States, 2016-2021
Authors: Colleen S Emery; Collin A Eagles-Smith; Kelly L Smalling; Blake R Hossack; Brian J Tornabene; Michael J Adams; Adam R Backlin; Adrianne B Brand; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Brian J Halstead; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler
Date: 2023-08-23
Comma-separated values (.csv) file containing data related to amphibian sampling across the United States between 2016 and 2021. Data files contain mercury concentrations in amphibian and dragonfly tissues, mercury concentrations in sediment, as well as amphibian morphometrics, and habitat and climate characteristics where the samples were collected.
Papers & Reports Native amphibian toxin reduces invasive crayfish feeding with potential benefits to stream biodiversity
Authors: Gary Bucciarelli; Sierra J. Smith; Justin J. Choe; Phoebe D. Shin; Robert N Fisher; Lee B Kats
Date: 2023-09-13 | Outlet: BMC Ecology and Evolution 23, 51
Biodiversity is generally reduced when non-native species invade an ecosystem. Invasive crayfish, Procambarus clarkii, populate California freshwater streams, and in the Santa Monica Mountains (Los Angeles, USA), their introduction has led to trophic cascades due to omnivorous feeding behavior and a rapid rate of population growth. The native California newt, Taricha torosa, possesses a neurotoxin, tetrodotoxin (TTX), that affects freshwater animal behavior. Given P. clarkii has a limited evolutionary history with TTX, we hypothesized that TTX may affect crayfish feeding behaviors. To determine if TTX affects P. clarkii behavior, we measured cumulative movement and various feeding behaviors of P. clarkii exposed to (i) waterborne, ecologically realistic concentrations of TTX (~?3.0?×?10??8 moles/L), (ii) an anuran chemical cue to account for intraguild cues, or (iii) a T. torosa chemical cue with quantitated TTX in it (~?6.2?×?10??8 moles/L).

Results
We found that the presence of TTX in any form significantly reduced crayfish movement and decreased the amount of food consumed over time. Crayfish responses to the anuran treatment did not significantly differ from controls.

Conclusion
Our laboratory results show that naturally occurring neurotoxin from native California newts limits invasive crayfish foraging and feeding rates, which may play a role in preserving local stream ecosystems by limiting invasive crayfish behaviors that are detrimental to biodiversity.
News & Stories Elevated road segment passage design may provide enhanced connectivity for amphibians, reptiles, and small mammals
Authors: Cheryl S Brehme; Stephanie Barnes; Brittany Ewing; Philip Gould; Cassie Vaughan; Michael Hobbs; Charles Tornaci; Sarah Holm; Hanna Sheldon; Jon Fiutak; Robert N Fisher
June 12, 2023

Introduction: Designs for safe and effective road crossing structures for small animals are typically under-road microtunnels and culverts which have varying levels of effectiveness reported in the scientific literature. Many species, particularly migratory amphibians, may have limited ability to find and use passages if they are too far apart, resulting in substantial barrier effects.

Methods: We designed a novel open elevated passage (elevated road segment: ERS), similar to a low terrestrial bridge, that could theoretically be built to any length based upon species needs and movement characteristics. A 30 m length prototype ERS was installed along a forest road with a history of amphibian road mortality in Sierra National Forest, Fresno County, CA, USA. From 2018 to 2021, we monitored small animal activity under the ERS in relation to surrounding roadside and forest habitats using active infrared cameras.

Results: We documented a total of 8,815 unique use events, using species specific independence criteria, across 22 species of amphibians (3), reptiles (4), and small mammals (15). Poisson regression modeling of taxonomic group activity under the ERS, roadside and forest, showed that amphibian activity was highest in the forest habitat, no differences were observed for reptiles, and small mammal activity was highest under the ERS. However, mean activity estimates under the ERS were equal to or greater than the open roadside habitat for all 22 species, suggesting that adding cover objects, such as downed logs and vegetation may further enhance passage use.

Discussion: Overall, results showed that the design of the ERS crossing has potential to provide high connectivity for a wide range of amphibian, reptile, and small mammal species while reducing road mortality. ERS systems can also be used in areas with challenging terrain and other hydrological and environmental constraints. Incorporating current road ecology science, we provide supplemental ERS concept designs for secondary roads, primary roads and highways to help increase the options available for road mitigation planning for small animals.

To view the full article click this link: https://doi.org/10.3389/fevo.2023.1145322

This is one of many research studies USGS is conducting to inform safe and effective road crossing systems for amphibians and reptiles. See https://www.usgs.gov/centers/werc/science/reptile-and-amphibian-road-ecology for more information.

Papers & Reports A Dataset of Amphibian Species in U.S. National Parks
Authors: Benjamin Lafrance; Andrew M Ray; Robert N Fisher; Evan HC Grant; S F Spear; J M Davenport; Brad M Glorioso; William J Barichivich; Brian J Halstead; Blake R Hossack
Date: 2024-01 | Outlet: Scientific Data 11: 21
National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.) National Park Service (NPS) requires understanding and maintaining accurate inventories of species on protected lands. We describe a new, national-scale synthesis of amphibian species occurrence in the NPS system. Many park units have a list of amphibian species observed within their borders compiled from various sources and available publicly through the NPSpecies platform. However, many of the observations in NPSpecies remain unverified and the lists are often outdated. We updated the amphibian dataset for each park unit by collating old and new park-level records and had them verified by regional experts. The new dataset contains occurrence records for 292 of the 424 NPS units and includes updated taxonomy, international and state conservation rankings, hyperlinks to a supporting reference for each record, specific notes, and related fields which can be used to better understand and manage amphibian biodiversity within a single park or group of parks.
Papers & Reports Broad-scale Assessment of Methylmercury in Adult Amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; Colleen S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science & Technology
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats, including contaminants. While the bi-phasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used non-lethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67) whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broadscale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for non-lethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify potential threats of MeHg to amphibians.
Papers & Reports Prioritizing the risk and management of introduced species in a landscape with high indigenous biodiversity
Authors: Jonathan Q Richmond; Jennifer Kingston; Brittany Ewing; Wendy Bear; Stacie A Hathaway; Cedric Lee; Camm C. Swift; Kristine L Preston; Allison J Schultz; Barbara E. Kus; Kerwin Russel; Philip Unitt; B Hollingsworth; Robert E Espinoza; Michael Wall; S Tremor; Kai Palenscar; Robert N Fisher
Date: 2023 | Outlet: Bulletin of the Southern California Academy of Sciences
Risk analysis protocols for prioritizing the management of non-native species are numerous, yet few incorporate risk and management in the same analysis or accommodate a broad diversity of taxa outside of a specific geographic area. We adapted a protocol that accounts for these factors to address non-native animal species in the Southern California/Northern Baja California Coast Ecoregion near the international border in San Diego County, an area with high indigenous biodiversity and high numbers of species of conservation concern. This stepwise, semi-quantitative protocol is applicable to any animal group in any predefined geographic area, relies on consensus-building among taxonomic experts, and has been vetted through previous use and in peer-reviewed literature. Our results show that the final prioritization was driven mainly by management feasibility, with top-ranked species having multitrophic effects that favor other non-native invaders over native residents. Conditions within the assessment area required some modification to the protocol as it was originally designed, namely a shift in emphasis from eradication to control, given that eradication is implausible for most non-native species in the assessment area. We call attention to taxon-specific issues that surfaced during the analysis, identify areas for improvement in this first-ever risk assessment for invasive animal species in the Natural Communities Conservation Plan/Habitat Conservation Plan (NCCP/HCP) reserve system of San Diego County, and provide suggestions for further refinement of the protocol. This study builds on the effort to standardize risk analysis for invasive species globally, given that many of the same invaders present threats to indigenous biodiversity worldwide.
Papers & Reports Elevated road segment (ERS) passage design may provide enhanced connectivity for amphibians, reptiles, and small mammals
Authors: Cheryl S Brehme; Stephanie Barnes; Brittany Ewing; Philip Gould; Cassie Vaughan; Michael Hobbs; Charles Tornaci; Sarah Holm; Hanna Sheldon; Jon Fiutak; Robert N Fisher
Date: 2023-05-24 | Outlet: Frontiers in Ecology and Evolution 11:1145322
Introduction: Designs for safe and effective road crossing structures for small animals are typically under-road microtunnels and culverts which have varying levels of effectiveness reported in the scientific literature. Many species, particularly migratory amphibians, may have limited ability to find and use passages if they are too far apart, resulting in substantial barrier effects.

Methods: We designed a novel open elevated passage (elevated road segment: ERS), similar to a low terrestrial bridge, that could theoretically be built to any length based upon species needs and movement characteristics. A 30 m length prototype ERS was installed along a forest road with a history of amphibian road mortality in Sierra National Forest, Fresno County, CA, USA. From 2018 to 2021, we monitored small animal activity under the ERS in relation to surrounding roadside and forest habitats using active infrared cameras.

Results: We documented a total of 8,815 unique use events, using species specific independence criteria, across 22 species of amphibians (3), reptiles (4), and small mammals (15). Poisson regression modeling of taxonomic group activity under the ERS, roadside and forest, showed that amphibian activity was highest in the forest habitat, no differences were observed for reptiles, and small mammal activity was highest under the ERS. However, mean activity estimates under the ERS were equal to or greater than the open roadside habitat for all 22 species, suggesting that adding cover objects, such as downed logs and vegetation may further enhance passage use.

Discussion: Overall, results showed that the design of the ERS crossing has potential to provide high connectivity for a wide range of amphibian, reptile, and small mammal species while reducing road mortality. ERS systems can also be used in areas with challenging terrain and other hydrological and environmental constraints. Incorporating current road ecology science, we provide supplemental ERS concept designs for secondary roads, primary roads and highways to help increase the options available for road mitigation planning for small animals.
Papers & Reports Broad-scale assessment of methylmercury in adult amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; C S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science and Technology 57:17511-17521
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67), whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.
Papers & Reports Revisiting conservation units for the endangered mountain yellow-legged frog species complex (Rana muscosa, Rana sierrae) using multiple genomic methods
Authors: Allison Q Byrne; Andrew P Rothstein; Lydia L Smith; Hannah Kania; Roland A Knapp; Danial M Boiano; Cheryl J Briggs; Adam R Backlin; Robert N Fisher; Erica B Rosenblum
Date: 2023-09-29 | Outlet: Conservation Genetics https://doi.org/10.1007/s10592-023-01568-5
Insights from conservation genomics have dramatically improved recovery plans for numerous endangered species. However, most taxa have yet to benefit from the full application of genomic technologies. The mountain yellow-legged frog species complex, Rana muscosa and Rana sierrae, inhabits the Sierra Nevada mountains and Transverse/Peninsular Ranges of California and Nevada. Both species have declined precipitously throughout their historical distributions. Conservation management plans outline extensive ongoing recovery efforts but are still based on the genetic structure determined primarily using a single mitochondrial sequence. Our study used two different sequencing strategies – amplicon sequencing and exome capture – to refine our understanding of the population genetics of these imperiled amphibians. We used buccal swabs, museum tissue samples, and archived skin swabs to genotype frog populations across their range. Using the amplicon sequencing and exome capture datasets separately and combined, we document five major genetic clusters. Notably, we found evidence supporting previous species boundaries within Kings Canyon National Park with some exceptions at individual sites. Though we see evidence of genetic clustering, especially in the R. muscosa clade, we also found evidence of some admixture across cluster boundaries in the R. sierrae clade, suggesting a stepping-stone model of population structure. We also find that the southern R. muscosa cluster had large runs of homozygosity and the lowest overall heterozygosity of any of the clusters, consistent with previous reports of marked declines in this area. Overall, our results clarify management unit designations across the range of an endangered species and highlight the importance of sampling the entire range of a species, even when collecting genome-scale data.
Papers & Reports Range-wide Persistence of the Endangered Arroyo Toad (Anaxyrus californicus) for 20+ Years Following a Prolonged Drought
Authors: C J Hitchcock; Elizabeth A Gallegos; Adam R Backlin; Russell Barabe; Peter H Bloom; Kimberly Boss; Cheryl S Brehme; Christopher W Brown; D R Clark; Elizabeth R Clark; Kevin Cooper; Julie Donnell; Edward L Ervin; Peter Famolaro; Kim M Guilliam; Jacquelyn J Hancock; Nicholas Hess; Steven Howard; Valerie Hubbartt; Patrick Lieske; Robert E Lovich; Tritia Matsuda; Katherin Meyer-Wilkins; Kamarul Muri; Barry Nerhus; J A Nordland; Brock Ortega; Robert H Packard; Ruben Ramirez; Sam C Stewart; S Sweet; M L Warburton; Jeffrey Wells; Ryan Winkleman; Kirsten Winter; Brian Zitt; Robert N Fisher
Date: 2022-03 | Outlet: Ecology and Evolution 12:e8796
Prolonged drought due to climate change has negatively impacted amphibians in southern California, U.S.A. Due to the severity and length of the current drought,
agencies and researchers had growing concern for the persistence of the arroyo toad (Anaxyrus californicus), an endangered endemic amphibian in this region. Range-wide surveys for this species had not been conducted for at least 20 years. In 2017–2020, we conducted collaborative surveys for arroyo toads at historical locations. We surveyed 88 of the 115 total sites having historical records and confirmed that the arroyo toad is currently extant in at least 61 of 88 sites and 20 of 25 historically occupied watersheds. We did not detect toads at almost a third of the surveyed sites but did detect toads at 18 of 19 specific sites delineated in the 1999 Recovery Plan to meet one of four downlisting criteria. Arroyo toads are estimated to live 7–8 years, making populations susceptible to prolonged drought. Drought is estimated to increase in frequency and duration with climate change. Mitigation strategies for drought impacts, invasive aquatic species, altered flow regimes, and other anthropogenic effects could be the most beneficial strategies for toad conservation and may also provide simultaneous benefits to several other native species that share the same habitat.
Papers & Reports Defining relevant conservation targets for the endangered Southern California distinct population segment of the mountain yellow-Legged frog (Rana muscosa)
Authors: Thierry C Chambert; Adam R Backlin; Elizabeth A Gallegos; Bradd Baskerville-Bridges; Robert N Fisher
Date: 2022-03-02 | Outlet: Conservation Science and Practice 2022;e12666
The endangered mountain yellow-legged frog (Rana muscosa) has been reduced to <10 isolated populations in the wild. Due to frequent catastrophic events (floods, droughts, wildfires), the recent dynamics of these populations have been erratic, making the future of the species highly uncertain. In 2018, a recovery plan was developed to improve the species status by reducing the impacts of various threats (predation, disease, habitat destruction), as well as reinforcing wild populations through the reintroduction of captive-bred frogs. The short-term goal stated in this plan was to reach a minimum of 20 populations of 50 adults each (hereafter, the 20/50 target), before the species can be considered for downlisting from the U.S. Endangered Species Act. However, there is no guarantee that this 20/50 target will be sufficient to ensure the species persistence in the long run. Using 19 years of mark-recapture data, we estimated populations' demographic trends and assessed the viability of R. muscosa from a starting state of 20 populations of 50 adults each (i.e., the downlisting criteria). Our results reveal that, from this 20/50 state, the species has high chances of persistence only at a short time horizon (50 years). Moreover, >80% of populations would be extinct 50 years later. Therefore, the species will not be able to persist without implementation of the reintroduction program. We found that it is more important to increase the number of suitable sites occupied by R. muscosa than to simply reinforce or augment existing populations. Expanding the current distribution by establishing new populations at suitable sites, even after the “20 populations” mark has been reached, would increase the likelihood of the species' persistence in the longer term.
Papers & Reports Projecting the remaining habitat for the western spadefoot (Spea hammondii) in heavily urbanized southern California
Authors: Jonathan P Rose; Brian J Halstead; Robert H Packard; Robert N Fisher
Date: 2022-01 | Outlet: Global Ecology and Conservation 33:e01944
Extensive urbanization in coastal southern California has reduced natural habitat in this biodiversity hotspot. To better conserve ecological communities, state and federal agencies, along with local jurisdictions and private stakeholders, developed regional conservation plans for southern California. Although many protected areas exist within this region, the patchwork nature of these protected areas might not provide good coverage for species that require multiple habitat components, such as amphibians with complex life histories. Because of declines in the past century, the status of the western spadefoot (Spea hammondii) in southern California is of concern to state and federal wildlife agencies. Species distribution models (SDMs) can aid in determining
the conservation status of imperiled species by projecting where suitable habitat remains and how much is protected from further development. We built SDMs that integrated site occupancy data from systematic pitfall trapping surveys and presence-only data from biodiversity databases and citizen science platforms to project the current distribution of western spadefoots in southern California. Western spadefoot occurrence was positively related to the cover of grassland or shrub/scrub and the % sand in the soil within a 1000 m buffer, and was negatively related to slope, elevation, and distance to ephemeral streams or vernal pools. Most of the remaining unprotected habitat for western spadefoots is in the southern half of its historical range in western San Diego and Riverside counties. A few large tracts of spadefoot habitat exist on U.S. Department of Defense lands and smaller tracts remain on ecological reserves owned by state and local government agencies. Only small patches of habitat remain in the northern half of this clade’s historical range in Ventura, Orange, Los Angeles, and San Bernardino counties. Existing regional conservation plans provide ostensible spatial coverage of the majority of extant habitat for western spadefoots in southern California, but most of the habitat within the jurisdiction of these plans lacks formal protection, exposing this species to further declines as urbanization continues in the 21st century.
Papers & Reports Impacts of a Non-indigenous Ecosystem Engineer, the American Beaver (Castor canadensis), in a Biodiversity Hotspot
Authors: Jonathan Q Richmond; Camm C. Swift; Thomas A. Wake; Cheryl S Brehme; Kristine L Preston; Barbara E. Kus; Edward L Ervin; S Tremor; Tritia Matsuda; Robert N Fisher
Date: 2021-11-18 | Outlet: Frontiers in Conservation Science 2:752400
Non-native species having high per capita impacts in invaded communities are those that modulate resource availability and alter disturbance regimes in ways that are biologically incompatible with the native biota. In areas where it has been introduced by humans, American beaver (Castor canadensis) is an iconic example of such species due to its capacity to alter trophic dynamics of entire ecosystems and create new invasional pathways for other non-native species. The species is problematic in several watersheds within the Southern California-Northern Baja California Coast Ecoregion, a recognized hotspot of biodiversity, due to its ability to modify habitat in ways that favor invasive predators and competitors over the region's native species and habitat. Beaver was deliberately introduced across California in the mid-1900s and generally accepted as non-native to the region up to the early 2000s; however, articles promoting the idea that beaver may be a natural resident have gained traction in recent years, due in large part to the species' charismatic nature rather than by presentation of sound evidence. Here, we discuss the problems associated with beaver disturbance and its effects on conserving the region's native fauna and flora. We refute arguments underlying the claim that beaver is native to the region, and review paleontological, zooarchaeological, and historical survey data from renowned field biologists and naturalists over the past ~160 years to show that no evidence exists that beaver arrived by any means other than deliberate human introduction. Managing this ecosystem engineer has potential to reduce the richness and abundance of other non-native species because the novel, engineered habitat now supporting these species would diminish in beaver-occupied watersheds. At the same time, hydrologic functionality would shift toward more natural, ephemeral conditions that favor the regions' native species while suppressing the dominance of the most insidious invaders.
Papers & Reports Multi-scale patterns in occurrence of an ephemeral pool-breeding amphibian
Authors: Brian J Halstead; Jonathan P Rose; D R Clark; Patrick M Kleeman; Robert N Fisher
Date: 2022-03 | Outlet: Ecosphere
Species distributions are governed by processes occurring at multiple spatial scales. For species with complex life cycles, the needs of all life stages must be met within the dispersal limitations of the species. Multi-scale processes can be particularly important for these species, where small-scale patterns in specific habitat components can affect the distribution of one life stage, whereas large-scale patterns in land cover might better explain the distribution of other life stages. Using a conditional multi-scale model, we evaluated which aspects of the landscape and local environment are most strongly related to occupancy patterns of western spadefoots (Spea hammondii). In northern and central California, the proportion of grassland land cover within 2 km of a site was positively related to the occurrence of the northern clade of the western spadefoot. At the pond scale, we found that western spadefoots were more likely to breed in pools with lower pH. Our results indicate that protecting remaining grasslands for adult spadefoots and ensuring multiple pools with diverse characteristics and hydroperiods so at least some pools result in successful breeding will likely be necessary to conserve western spadefoots, especially with a changing climate. Considering the processes that affect species distributions at multiple life stages and spatial scales is an essential component of effective conservation.
Papers & Reports Responses of migratory amphibians to barrier fencing inform the spacing of road underpasses: a case study with California tiger salamanders (Ambystoma californiense) in Stanford, CA, USA
Authors: Cheryl S Brehme; J Tracey; Brittany Ewing; Michael Hobbs; A E Launer; Tritia Matsuda; Esther M. Cole Adelsheim; Robert N Fisher
Date: 2021-11 | Outlet: Global Ecology and Conservation 31:e01857
Migratory amphibians are at high risk of negative impacts when roads intersect their upland and breeding habitats. Road mortality can reduce population abundance, survivorship, breeding, recruitment, and probability of long-term persistence. Increasingly, environmental planners recommend installation of under-road tunnels with barrier fencing to reduce mortality and direct amphibians towards the passages. Often, the permeability of these barrier and passage systems to amphibian population movements are unknown. We studied the movements of California tiger salamanders (CTS: Ambystoma californiense) in relation to solid and mesh barrier fencing attached to a 3-tunnel system between upland and breeding habitats in Stanford, California. We deployed active-trigger cameras along the fencing, used pattern recognition software to identify individuals by their unique spot patterns, and calculated individual salamander movement distances, speed, direction changes, and “success” at reaching the tunnel system. We found that migrating adult CTS moved an average of 40 m along barrier fencing before turning back into the habitat or “giving-up”. This short distance, in comparison to long migratory movements, may be explained by the orientation mechanisms salamanders use to reach their breeding sites. The probability CTS found a passage decreased rapidly with increasing distance from the tunnel system, particularly if individuals turned the “wrong” way after encountering the fence. Salamanders changed directions more often and spent more time along mesh fencing. Our results suggest that a maximum of 12.5 m between passages along CTS migration routes should allow approximately 90% of adult salamanders to encounter road crossings. Additionally, use of solid fencing or a visual barrier on mesh fencing may help to lead salamanders to passages most efficiently. These considerations can assist those seeking to design effective road mitigation for CTS and other migratory amphibians.
Papers & Reports Conservation Implications of Spatiotemporal Variation in the Terrestrial Ecology of Western Spadefoots
Authors: Brian J Halstead; Katherine L Baumberger; Adam R Backlin; Patrick M Kleeman; Monique N. Wong; Elizabeth A Gallegos; Jonathan P Rose; Robert N Fisher
Date: 2021-07-19 | Outlet: Journal of Wildlife Management 85(7):1377-1393.
Conservation of species reliant on ephemeral resources can be especially challenging in the face of a changing climate. Western spadefoots (Spea hammondii) are small burrowing anurans that breed in ephemeral pools, but adults spend the majority of their lives underground in adjacent terrestrial habitat. Western spadefoots are of conservation concern throughout their range because of habitat loss, but little is known about the activity patterns and ecology of their terrestrial life stage. We conducted a radio-telemetry study of adult western spadefoots at 2 sites in southern California, USA, from December 2018 to November 2019 to characterize their survival, behavior, and movements from breeding through aestivation to refine conservation and management for the species. Western spadefoot survival varied seasonally, with risk of mortality higher in the active season than during aestivation. The probability of movement between successive observations was higher during the winter and spring and when atmospheric moisture was high and soil water content at 10-cm depth was low. The amount of rain between observations had the strongest effect on the probability of movement between observations; for every 20?mm of rainfall between observations, western spadefoots were 2.4 times more likely to move. When movements occurred, movement rates were highest when both relative humidity and soil water content at 10-cm depth were high. The conditions under which western spadefoots were likely active on the surface, likely to have moved, and moved at the highest rates are conditions that reduce the risk of desiccation of surface-active spadefoots. Western spadefoot home range areas varied between study sites and were mostly <1?ha, although 1 individual's home range area was >6?ha. Western spadefoots rapidly dispersed from the breeding pools, and asymptotic distances from the breeding pool were generally reached by June. The asymptotic distance from the breeding pool varied between sites, with the 95th percentile of the posterior predictive distribution reaching 486?m at 1 site and 187?m at the other. Western spadefoots did not select most habitat components disproportionately to their availability, but at Crystal Cove State Park, they avoided most evaluated vegetation types (graminoids, forbs, and shrubs). Spatial variation was evident in most evaluated western spadefoot behaviors; context-dependent behavior suggests that site-specific management is likely necessary for western spadefoots. Furthermore, comparison with an earlier study of western spadefoots at Crystal Cove State Park indicated substantial temporal variation in western spadefoot behavior. Therefore, basing management decisions on short-term studies might fail to meet conservation objectives. Better understanding the influences of spatial context and climatic variation on western spadefoot behavior will improve conservation efforts for this species.
Papers & Reports Conservation of Northwestern and Southwestern Pond Turtles: Threats, Population Size Estimates, and Population Viability Analysis
Authors: S Manzo; E Nicholson; Z Devereux; Robert N Fisher; Christopher W Brown; P Scott; H B Shaffer
Date: 2021-12 | Outlet: Journal of Fish and Wildlife Management 12(2):485-501;e1944-687X
Accurate status assessments of long-lived, widely distributed taxa depend on the availability of long-term monitoring data from multiple populations. However, monitoring populations across large temporal and spatial scales is often beyond the scope of any one researcher or research group. Consequently, wildlife managers may be tasked with utilizing limited information from different sources to detect range-wide evidence of population declines and their causes. When assessments need to be made under such constraints, the research and management communities must determine how to extrapolate from variable population data to species-level inferences. Here, using three different approaches, we integrate and analyze data from the peer-reviewed literature and government agency reports to inform conservation for northwestern pond turtles (NPT) Actinemys marmorata and southwestern pond turtles (SPT) Actinemys pallida. Both NPT and SPT are long-lived freshwater turtles distributed along the west coast of the United States and Mexico. Conservation concerns exist for both species; however, SPT may face more severe threats and are thought to exist at lower densities throughout their range than NPT. For each species, we ranked the impacts of 13 potential threats, estimated population sizes, and modeled population viability with and without long-term droughts. Our results suggest that predation of hatchlings by invasive predators, such as American bullfrogs Lithobates catesbeianus and Largemouth Bass Micropterus salmoides, is a high-ranking threat for NPT and SPT. Southwestern pond turtles may also face more severe impacts associated with natural disasters (droughts, wildfires, and floods) than do NPT. Population size estimates from trapping surveys indicate that SPT have smaller population sizes on average than do NPT (P = 0.0003), suggesting they may be at greater risk of local extirpation. Population viability analysis models revealed that long-term droughts are a key environmental parameter; as the frequency of severe droughts increases with climate change, the likelihood of population recovery decreases, especially when census sizes are low. Given current population trends and vulnerability to natural disasters throughout their range, we suggest that conservation and recovery actions first focus on SPT to prevent further population declines.
Papers & Reports Western pond turtles in the Mojave Desert? A review of their past, present, and possible future
Authors: J Lovich; G . Jefferson; Robert Reynolds; P Scott; H B Shaffer; Shellie Puffer; Sarah Greely; Kristy Cummings; Robert N Fisher; Katherin Meyer-Wilkins; Doug Gomez; Morgan Ford; Christopher D. Otahal
Date: 2021-05-25 | Outlet: Vertebrate Zoology 71:317-334.
The western pond turtle (WPT) was formerly considered a single species (Actinemys or Emys marmorata[I/}) that ranged from southern British Columbia, Canada to Baja California, México. More recently it was divided into a northern and a southern species. WPTs are found primarily in streams that drain into the Pacific Ocean, although scattered populations exist in endorheic drainages of the Great Basin and Mojave deserts. Populations in the Mojave Desert were long thought to be restricted to the Mojave River, but recently another population was documented in Piute Ponds, a terminal wetland complex associated with Amargosa Creek on Edwards Air Force Base. WPT fossils in the Mojave Desert are known from the Miocene to the Pleistocene. Recently, Pleistocene fossils have been found as far into the desert as Salt Springs, just south of Death Valley. The oldest fossil records suggest that WPTs were present in wetlands and drainages of the geological feature known as the Mojave block prior to the uplift of the Sierra Nevada Range about 8 Ma and prior to the ~ 3 Ma uplift of the Transverse Ranges. Archaeological records document use of turtles by Native Americans for food and cultural purposes 1,000 or more years ago at the Cronese Lakes on the lower Mojave River and Oro Grande on the upper river. The first modern publication documenting their presence in the Mojave River was 1861. Museum specimens were collected as early as 1937. These fossil and early literature records support the indigenous status of WPTs to the Mojave River. However, mtDNA-based genetic evidence shows that Mojave River turtles share an identical haplotype with turtles on the California coast. Limited nuclear data show some minor differences. Overdraft of the Mojave River for municipal and agricultural uses, urban development, and saltcedar expansion are threats to the continued survival of WPTs in the Mojave River.
Papers & Reports Conservation genomics of the threatened western spadefoot, Spea hammondii, in urbanized southern California
Authors: K M Neal; Robert N Fisher; M J Mitrovich; H B Shaffer
Date: 2020-11-27 | Outlet: Journal of Heredity 2020:613-627
Populations of the western spadefoot (Spea hammondii) in southern California occur in one of the most urbanized and fragmented landscapes on the planet and have lost up to 80% of their native habitat. Orange County is one of the last strongholds for this pond-breeding amphibian in the region, and ongoing restoration efforts targeting S. hammondii have involved habitat protection and the construction of artificial breeding ponds. These efforts have successfully increased breeding activity, but genetic characterization of the populations, including estimates of effective population size and admixture between the gene pools of constructed artificial and natural ponds, has never been undertaken. Using thousands of genome-wide single-nucleotide polymorphisms, we characterized the population structure, genetic diversity, and genetic connectivity of spadefoots in Orange County to guide ongoing and future management efforts. We identified at least 2, and possibly 3 major genetic clusters, with additional substructure within clusters indicating that individual ponds are often genetically distinct. Estimates of landscape resistance suggest that ponds on either side of the Los Angeles Basin were likely interconnected historically, but intense urban development has rendered them essentially isolated, and the resulting risk of interruption to natural metapopulation dynamics appears to be high. Resistance surfaces show that the existing artificial ponds were well-placed and connected to natural populations by low-resistance corridors. Toad samples from all ponds (natural and artificial) returned extremely low estimates of effective population size, possibly due to a bottleneck caused by a recent multi-year drought. Management efforts should focus on maintaining gene flow among natural and artificial ponds by both assisted migration and construction of new ponds to bolster the existing pond network in the region.