Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

777 record(s) found.

Papers & Reports The eight-day interval during which amphibians first called annually at individual study wetlands across four study areas.
Authors: W J Sadinski; Mark F Roth
Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH
To help determine when winter conditions were changing to spring conditions annually in our four study areas, we determined the first eight-day interval (in accordance with the scale limitations of satellite data we used to assess the presence of snow) during which the first amphibian of the season called at each of our study wetlands in those areas. To do this, we examined contour plots of summaries of all the acoustic data we collected at that site in a given year to identify the unique call signatures of individual amphibian species by date and time. When necessary due to potential confounding on a contour plot, we also examined relevant individual five-minute recordings aurally and visually to confirm whether a call occurred. When we confirmed the date of the first call we recorded in a given season, we identified the eight-day interval in which that date fell, with the first such interval beginning on January 1 of each year.
Papers & Reports Seasonal median daily water depths for study wetlands in the Tamarac National Wildlife Refuge, the St. Croix National Scenic Riverway, the North Temperate Lakes Long-term Research area, and the Upper Mississippi River study area from 2008-2012
Authors: W J Sadinski; Mark F Roth
Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH.
To relate water levels in our study wetlands to temperature, precipitation, wetland water depth, and amphibian calling activity, we installed one pressure logger in the deepest spot we could find in each wetland. Soon after thawing conditions allowed, we drove a plastic pipe (anchor pipe) into the sediments at the deepest location and secured another pipe to it that contained one pressure logger (Global Water Model 14 and 15 [College Station, TX, USA] or Onset Computer Corporation Model U20-001-04 [Bourne, MA, USA]) suspended approximately 2.5 cm above the sediments. We installed additional individual pressure loggers in the upper part of the logger pipes (in air) at select locations to measure barometric pressure for calibrating the submerged loggers’ readings. We measured pressure once per hour and used software supplied by the logger manufacturers to upload and convert data to depth at the end of each season.
Papers & Reports Daily calling activity for Pseudacris crucifer at site SC4DAI2 in the St. Croix National Scenic Riverway from 2008 to 2012, as indicated by the results of integrating daily median dB values across 2900 to 3200 Hz and 2100 to 2300 h
Authors: W J Sadinski; Mark F Roth
Date: 2018-09-06 | Outlet: U.S. Geological Survey data release, https://doi.org/10.5066/F7CR5SBH
To describe calling activity of Pseudacris crucifer in relation to temperature, precipitation, and wetland water levels, we programmed an acoustic recorder (Wildlife Acoustics) to sample seasonal amphibian calls remotely at study site SC4DAI2 in the St. Croix National Scenic Riverway from 2008 to 2012. We programmed the recorder to sample for five minutes at the top of every hour of every day from late winter/early spring through late summer. We used the Songscape option in Songscope software to generate annual summaries of all of our acoustic samples from SC4DAI2. These summaries included a median dB level for each prescribed frequency within each recording. Pseudacris crucifer, the spring peeper, inhabited SC4DAI2 and typically called over several weeks each year, depending upon weather conditions and surface-water availability. Most of the energy in their individual calls occurred between 2900 and 3200 Hz, which provided a unique acoustic signature compared with the other anurans that called from the site. We used this information as part of a case study to better understand how the daily calling activity of P. crucifer varied relative to air temperature, precipitation, and water depth at SC4DAI2 across years. We first determined the daily median dB levels for frequencies across 2900 to 3200 Hz during 2100 to 2300 h, a time period during which P. crucifer typically called throughout their calling season. We did this for each day from the date when P. crucifer first called each year to the date when they last called each year and considered any day in this range as one during which they potentially could call. Because calling activity could vary from one hour to the next, we integrated the area under the curve for the daily median dB levels from 2900 to 3200 Hz during 2100 to 2300 h. We removed dates when overlapping sounds from storms or other sources rendered comparisons to calls of P. crucifer inaccurate. We used the resultant set of integrands to represent the relative sound intensity (as an indicator of calling activity) for P. crucifer across those hours for each date. Those integrands are contained in this data set. These data enabled us to then compare daily integrand values with daily measurements of air temperature, precipitation totals, and water depth.
Papers & Reports Challenges in complementing data from ground-based sensors with satellite-derived products to measure ecological changes in relation to climate?lessons from temperate wetland-upland landscapes
Authors: A L Gallant; W J Sadinski; Jesslyn F Brown; G B Senay; Mark F Roth
Date: 2018-03-16 | Outlet: Sensors 18(3)880
Assessing climate-related ecological changes across spatiotemporal scales meaningful to resource managers is challenging because no one method reliably produces essential data at both fine and broad scales. We recently confronted such challenges while integrating data from ground- and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest. We examined relations between temperature and precipitation and a set of variables measured on the ground at individual wetlands and another set measured via satellite sensors within surrounding 4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity. We used sensors on the ground to coincidentally measure surface-water availability and amphibian calling activity at individual wetlands within blocks. Responses of landscape blocks generally paralleled changes in conditions measured on the ground, but the latter were more dynamic, and changes in ecological conditions on the ground that were critical for biota were not always apparent in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions and assumptions we made in applying the remotely sensed data for the assessment and the value of integrating observations across scales, sensors, and disciplines.
Papers & Reports Multi-year data from satellite- and ground-based sensors show details and scale matter in assessing climate's effects on wetland surface water, amphibians, and landscape conditions
Authors: W J Sadinski; A L Gallant; Mark F Roth; Jesslyn F Brown; G Senay; Wayne Brininger; P M Jones; J Stoker
Date: 2018-09-07 | Outlet: PLoS ONE 13(9): e0201951
Long-term, interdisciplinary studies of relations between climate and ecological conditions on wetland-upland landscapes have been lacking, especially studies integrated across scales meaningful for adaptive resource management. We collected data in situ at individual wetlands, and via satellite for surrounding 4-km2 landscape blocks, to assess relations between annual weather dynamics, snow duration, phenology, wetland surface-water availability, amphibian presence and calling activity, greenness, and evapotranspiration in four U.S. conservation areas from 2008 to 2012. Amid recent decades of relatively warm growing seasons, 2012 and 2010 were the first and second warmest seasons, respectively, dating back to 1895. Accordingly, we observed the earliest starts of springtime biological activity during those two years. In all years, early-season amphibians first called soon after daily mean air temperatures were ? 0°C and snow had mostly melted. Similarly, satellite-based indicators suggested seasonal leaf-out happened soon after snowmelt and temperature thresholds for plant growth had occurred. Daily fluctuations in weather and water levels were related to amphibian calling activity, including decoupling the timing of the onset of calling at the start of season from the onset of calling events later in the season. Within-season variation in temperature and precipitation also was related to vegetation greenness and evapotranspiration, but more at monthly and seasonal scales. Wetland water levels were moderately to strongly associated with precipitation and early or intermittent wetland drying likely reduced amphibian reproduction success in some years, even though Pseudacris crucifer occupied sites at consistently high levels. Notably, satellite-based indicators of landscape water availability did not suggest such consequential, intra-seasonal variability in wetland surface-water availability. Our cross-disciplinary data show how temperature and precipitation interacted to affect key ecological relations and outcomes on our study landscapes. These results demonstrate the value of multi-year studies and the importance of scale for understanding actual climate-related effects in these areas.
Papers & Reports Compounding effects of climate change reduce population viability of a montane amphibian
Authors: Amanda M Kissel; Wendy J Palen; Maureen E Ryan; Michael J Adams
Date: 2018-12-27 | Outlet: Ecological Applications
Anthropogenic climate change presents challenges and opportunities to the growth, reproduction, and survival of individuals throughout their life cycles. Demographic compensation among life-history stages has the potential to buffer populations from decline, but alternatively, compounding negative effects can lead to accelerated population decline and extinction. In montane ecosystems of the US Pacific Northwest, increasing temperatures are resulting in a transition from snow-dominated to rain-dominated precipitation events, reducing snowpack. For ectotherms such as amphibians, warmer winters can reduce the frequency of critical minimum temperatures and increase the length of summer growing seasons, benefiting post-metamorphic stages, but may also increase metabolic costs during winter months, which could decrease survival. Lower snowpack levels also result in wetlands that dry sooner or more frequently in the summer, increasing larval desiccation risk. To evaluate how these challenges and opportunities compound within a species? life history, we collected demographic data on Cascades frog (Rana cascadae) in Olympic National Park in Washington state to parameterize stage-based stochastic matrix population models under current and future (A1B, 2040s and 2080s) environmental conditions. We estimated the proportion of reproductive effort lost each year due to drying using watershed-specific hydrologic models, and coupled this with an analysis that relates 15-years of R. cascadae abundance data with a suite of climate variables. We estimated the current population growth (λs) to be https://0.98 (95% CI: 0.97-0.99), but predict that λs will decline under continued climate warming, resulting in a 62% chance of extinction by the 2080s because of compounding negative effects on early and late life history stages. By the 2080s, our models predict that larval mortality will increase by 17% as a result of increased pond drying, and adult survival will decrease by 7% as winter length and summer precipitation continue to decrease. We find that reduced larval survival drives initial declines in the 2040s, but further declines in the 2080s are compounded by decreases in adult survival. Our results demonstrate the need to understand the potential for compounding or compensatory effects within different life history stages to exacerbate or buffer the effects of climate change on population growth rates through time.
Papers & Reports Multistate occupancy modeling improves understanding of amphibian breeding dynamics in the Greater Yellowstone Area
Authors: W R Gould; Andrew M Ray; Larissa L Bailey; D Thoma; R Daley; K Legg
Outlet: Ecological Applications
Papers & Reports Time-to-detection Occupancy Modeling: An Efficient Method for Analyzing the Occurrence of Amphibians and Reptiles
Authors: Brian J Halstead; Patrick M Kleeman; Jonathan P Rose
Date: 2018-11-27 | Outlet: Journal of Herpetology 52:416-425
Occupancy models provide a reliable measure of species distributions while accounting for imperfect detectability. The cost of accounting for false absences is that occupancy surveys typically require repeated visits to a site or multiple-observer techniques. More efficient methods of estimating detection probabilities would allow more sites to be surveyed for the same effort, resulting in more information about the ecological processes leading to occupancy. Time-to-detection surveys allow the estimation of detection probability based on a single site visit by one observer, and therefore might be an efficient technique for herpetological occupancy studies. We evaluated the use of time-to-detection surveys to estimate the occupancy of pond-breeding amphibians at Point Reyes National Seashore, California, USA, including variables that affected detection rates and the probability of occurrence. We found that detection times were short enough and occupancy high enough to reliably estimate the probability of occurrence of three pond-breeding amphibians at Point Reyes National Seashore, and that survey and site conditions had species-specific effects on detection rates. In particular, relative abundance was negatively related to the time to initial detection of all species, and pond area was positively related to time to initial detection for Sierran Treefrogs (Hyliola sierra) and Rough-skinned Newts (Taricha granulosa). Rough-skinned newt time to initial detection also was affected by date, with lowest initial detection time in early summer. California Red-legged Frog (Rana draytonii) time to detection was lowest in ponds with a mean depth of 0.6 m, and higher in shallower and deeper ponds. Probability of occurrence of Sierran Treefrogs and Rough-skinned Newts was negatively related to the presence of fish and pond area. Rarely detected species required constraints on priors to fit time-to-detection models. Time-to-detection surveys can provide an efficient method of estimating detection probabilities and accounting for false absences in occupancy studies of reptiles and amphibians.
Papers & Reports Aquatic macroinvertebrate community response to wetland mitigation in the Greater Yellowstone Ecosystem
Authors: L K Swartz; Blake R Hossack; Erin L Muths; R L Newell; W H Lowe
Date: 2019 | Outlet: Freshwater Biology 64: 942-953
Papers & Reports Effects of Persistent Energy-related Brine Contamination on Amphibian Abundance in National Wildlife Refuge Wetlands
Authors: Blake R Hossack; Kelly L Smalling; Chauncey W Anderson; Todd Preston; I M Cozzarelli,; R K Honeycutt
Date: 2018 | Outlet: Biological Conservation 228:36–43
Papers & Reports Estimating the probability of movement and partitioning seasonal survival in an amphibian metapopulation
Authors: Erin L Muths; Larissa L Bailey; Brad A Lambert; S Schneider
Date: 2018-12 | Outlet: Ecosphere
Movement of individuals has been described as one of the best studied, but least understood concepts in ecology. The magnitude of movements, routes, and probability of movement, has significant application to conservation. Information about movement can inform efforts to model species persistence and is particularly applicable in situations where specific threats (e.g., disease) may depend on the movement of hosts and potential vectors. We estimated the probability of movement (breeding dispersal and permanent emigration) in a metapopulation of 16 breeding sites for boreal toads (Anaxyrus boreas boreas). We used a multi-state mark-recapture approach unique in its complexity (16 sites over 18 years) to address questions related to these movements and variation in resident survival. We found that individuals had a 1-2% probability of dispersing in a particular year and that approximately 10-20% of marked individuals were transient and observed in the metapopulation only once. Resident survival probabilities differed by season, with 71-90% survival from emergence from hibernation through early post-breeding and > 97% survival from mid/late active season through hibernation. Movement-related probabilities are needed to predict species range expansions and contractions, estimate population and metapopulation dynamics, understand host-pathogen and native-invasive species interactions, and to evaluate the relative effects of proposed management actions.
Papers & Reports Late-season movement and habitat use by Oregon Spotted Frog (Rana pretiosa in Oregon, USA
Authors: Christopher A Pearl; Brome McCreary; Jennifer C Rowe; Michael J Adams
Date: 2018-09-27 | Outlet: Copeia
Many amphibians use multiple habitats across seasons. Information on seasonal habitat use, movement between seasonal habitat types, and habitats that may be particularly valuable is important to conservation and management. We used radio-telemetry to study late- season movement and habitat use by Oregon Spotted Frog (Rana pretiosa) at 9 sites from 4 populations along the Cascade Mountains in Oregon. Movement rates declined with date and were the lowest at the end of tracking in December and January. Frogs across our sites used vegetated shallows in late summer and early fall. In fall, frogs used a range of habitat types, and at several sites moved to specialized distinctive habitats such as springs, interstices in lava rock, and semi-terrestrial beaver channels. Distance between first and last tracking location was <250 m for 84.5% (49/58) of frogs, ranged up to 1145 m, and was greater for frogs in ditch habitats than those not in ditches. DistinctiveSpecialized features like springs or semi-terrestrial retreats can host multiple frogs and may represent particularly valuable wintering habitat for R. pretiosa in some sites in their Oregon range.
Papers & Reports CO-OCCURENCE OF CHIRICAHUA LEOPARD FROGS (LITHOBATES CHIRICAHUENSIS) WITH SUNFISH (LEPOMIS SPP.)
Authors: P E Howell; Brent H Sigafus; Blake R Hossack; Erin L Muths
Outlet: Southwestern Naturalist 64:69-72
Invasive species are a major threat to the persistence of native species, particularly in systems where ephemeral aquatic habitats have been converted to or replaced by permanent water and predators such as fish have been introduced. Within the Altar Valley, Arizona, USA, the invasive American bullfrog (Lithobates [=Rana] catesbeianus) has been successfully eradicated to help recover Chiricahua leopard frogs (Lithobates chiricahuensis). However, other non-native predators including sunfish (Lepomis spp) are present in some permanent water bodies. During four consecutive years (2014-2017) we detected both the federally-threatened Chiricahua leopard frog and sunfish at one permanent water body in the Altar Valley. This suggests that despite the potential negative effect of predatory fish on amphibians, there may be conditions where the Chiricahua leopard frog may be able to co-occur with this non-native predator. A better understanding of rare situations of co-occurrence with non-native predators may contribute to our understanding of why co-occurrence happens in some but not all systems and whether conservation strategies can be developed in situations where complete eradication of non-native predators is infeasible.
Papers & Reports Twenty-nine years of population dynamics in a small-bodied montane amphibian
Authors: Erin L Muths; R D Scherer; Staci M Amburgey; P S Corn
Outlet: Ecosphere
Identifying population declines before they reach crisis proportions is imperative given the current global decline in vertebrate fauna and the associated challenges and expense of recovery. Understanding life-histories and how the environment influences demography are critical aspects of this challenge, as is determining the biological relevance of covariates that are best supported by data. We used 29 years of data on chorus frogs at two sites to estimate demographic parameters, examine life-history, assess weather-related covariates, and determine the magnitude of process variation in target parameters. Average estimates of survival probabilities were https://0.51 (SE=0.04) and https://0.43 (SE=0.04), and average estimates of recruitment probabilities were https://0.64 (SE=0.07) and https://0.44 (SE=0.04). Process variation accounted for &#61619; 76% of the total temporal variation in both parameters at one pond and in survival probability alone at the other, suggesting that the covariates in our top models were explaining predominantly process rather than sampling variation. Estimates of population growth rates indicated a declining population at one pond (i.e., negative population growth rates in 15 of 18 years) and comparisons with historical estimates suggested declines in survival probability at the other. The amount of deviance explained was low, providing little support for the influence of covariates on target parameters, despite model selection support. Synthesis and applications: This analysis illustrates the value of disentangling components of variance when assessing demographic drivers and highlights the need for adequate demographic information in assigning conservation labels.
Papers & Reports The relative efficiency of native and non-native aquatic species as predators of potential disease vectors: Invasive crayfish enhance the survival of mosquitoes
Authors: Gary Bucciarelli; D Suh; A Davis; D Sharpton; D Roberts; H B Shaffer; Robert N Fisher; Lee B Kats
Date: 2018-08-06 | Outlet: Conservation Biology
The introductions of non-native predators often reduce biodiversity and affect natural predator-prey relationships. However, non-native predators may increase the abundance of potential disease vectors (e.g. mosquitoes) indirectly through competition or predation cascades. The Santa Monica
Mountains, situated in a global biodiversity hotspot, is an area of conservation concern due to climate change, urbanization, and the introduction of non-native species. We examined the effect that non-native crayfish (Procambarus clarkii) have on an existing native predator, dragonfly nymphs (Aeshna sp.) and their mosquito larvae (Anopheles sp.) prey. We used laboratory experiments to compare the predation efficiency of both predators, separately and together, and field data on counts of dragonfly nymphs and mosquito larvae sampled from 13 local streams. We predicted a lower predation efficiency of crayfish compared to native dragonfly nymphs as well as a reduced efficiency of dragonfly nymphs in the presence of crayfish. Dragonfly nymphs were an order of magnitude more efficient mosquito predators compared to crayfish and dragonfly
nymphs suffered reduced efficiency in the presence of crayfish. Analyses of field count data showed that populations of dragonfly nymphs and mosquito larvae were strongly correlated with crayfish presence in streams, such that sites with crayfish tended to have fewer dragonfly
nymphs and more mosquito larvae. Under natural conditions, it is likely that crayfish reduce the abundance of dragonfly nymphs and their predation efficiency, and thereby, directly and indirectly, lead to higher mosquito populations and a loss of ecosystem services related to disease vector control.
Papers & Reports Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the U.S. Pacific Northwest
Authors: Jeanne M Robertson; M A Murphy; Christopher A Pearl; Michael J Adams; M I Páez-Vacas; S M Haig; David S Pilliod; A Storfer; W C Funk
Date: 2018-07-16 | Outlet: Molecular Ecology
Comparative landscape genetics has uncovered high levels of variability in which landscape factors affect connectivity among species and regions. However, the relative importance of species traits vs. environmental variation for predicting landscape patterns of connectivity is unresolved. We provide a test with a landscape genetics study of two sister taxa of frogs, the Oregon spotted frog (Rana pretiosa) and the Columbia spotted frog (R. luteiventris) in Oregon and Idaho, USA. Rana pretiosa is relatively more dependent on moisture for dispersal than R. luteiventris, so if species traits influence connectivity, we predicted that connectivity among R. pretiosa populations would be more positively associated with moisture than R. luteiventris. However, if environmental differences are important drivers of gene flow, we predicted that connectivity would be more positively related to moisture in arid regions. We tested these predictions using eight microsatellite loci and gravity models in two R. pretiosa regions and four R. luteiventris regions (n = 1,168 frogs). In R. pretiosa, but not R. luteiventris, connectivity was positively related to mean annual precipitation, supporting our first prediction. In contrast, connectivity was not more positively related to moisture in more arid regions. Various temperature metrics were important predictors for both species and in all regions, but the directionality of their effects varied. Therefore, the pattern of variation in drivers of connectivity was consistent with predictions based on species traits rather than on environmental variation.
Papers & Reports Pre-publication communication of research results
Authors: Michael J Adams; Reid N Harris; Evan HC Grant; M J Gray; Maria-Richetta C Hopkins; S A Iverson; R Likens; Mark Mandica; Deanna H Olson; A Shepack; J Hardin Waddle
Date: 2018-08-11 | Outlet: EcoHealth
Until publication, communication of provisional scientific findings beyond participants in the study is typically limited. This practice helps assure scientific integrity. However, a dilemma arises when a provisional finding has urgent societal consequences that may be exacerbated by delay. This dilemma may be particularly pronounced when a discovery concerns wildlife health, which could have implications for conservation, public health, or domestic animal health. Eleven researchers suggest that common concerns about directed prepublication communication largely stem from misperceptions and that none should cause a delay in the communication of time-sensitive provisional findings to appropriate authorities. Instead, they suggest that rapid communication of a provisional discovery could be beneficial, such as in the example they use involving the potential discovery of the amphibian fungal pathogen Bsal that is currently causing salamander die-offs in Europe.
Papers & Reports Pharmaceuticals, Hormones, Pesticides, and other Bioactive Contaminants in Water, Sediment, and Tissue from Rocky Mountain National Park, 2012-2013
Authors: William A Battaglin; Paul M Bradley; L Iwanowicz; Celeste A Journey; Vicki S Blazer
Date: 2018-06-05 | Outlet: Science of the Total Environment 643:651-673
Pharmaceuticals, hormones, pesticides, and other bioactive contaminants (BCs) are commonly detected in surface water and bed sediment in urban and suburban areas, but these contaminants are understudied in remote locations. In Rocky Mountain National Park (RMNP), Colorado, USA, BCs may threaten the reproductive success and survival of native aquatic species, benthic communities, and pelagic food webs. In 2012-2013, 67 water, 57 sediment, 63 fish, 10 frog, and 12 quality-control samples (8 water and 4 sediment) were collected from 20 sites in RMNP. Samples were analyzed for 369 parameters including 149 pharmaceuticals, 22 hormones, 137 pesticides, and 61 other chemicals or conditions to provide a representative assessment of BC occurrence within RMNP. Results indicate that BCs were detected in water and/or sediment from both remote and more accessible locations in RMNP. The most commonly detected BCs in water were caffeine, camphor, para-cresol, and DEET; and the most commonly detected BCs in sediment were indole, 3-methyl-1H-indole, para-cresol, and 2,6-dimethyl-naphthalene. Some detected contaminants, including carbaryl, caffeine, and oxycodone, are clearly attributable to direct local human input, whereas others may be transported into the park atmospherically (e.g., atrazine) or have local natural sources (e.g., para-cresol). One or more pharmaceuticals were detected in at least 1 sample from 15 of 20 sites. Most of the 29 detected pharmaceuticals are excreted primarily in human urine, not feces. Elevated net estrogenicity was observed in 18% of water samples, and elevated vitellogenin in blood was observed in 12% of male trout, both evidence of potential endocrine disruption. Hormone concentrations in sediment tended to be greater than concentrations in water. Most BCs were observed at concentrations below those not expected to pose adverse effects to aquatic life. Results indicate that even in remote locations aquatic wildlife can be exposed to pharmaceuticals, hormones, pesticides, and other bioactive contaminants.
Papers & Reports Quantifying climate sensitivity and climate driven change in North American amphibian communities
Authors: David AW Miller; Evan HC Grant; Erin L Muths; Staci M Amburgey; Michael J Adams; M B Joseph; J Hardin Waddle; P TJ Johnson; Maureen E Ryan; Benedikt R Schmidt; Daniel L Calhoun; Courtney L Davis; Robert N Fisher; D E Green; Blake R Hossack; Tracy A. Rittenhouse; Susan C Walls; Larissa L Bailey; Sam S Cruickshank; Gary M Fellers; Thomas A Gorman; C A Haas; Ward Hughson; David S Pilliod; S J Price; Andrew M Ray; W J Sadinski; D Saenz; William J Barichivich; Adrianne B Brand; Cheryl S Brehme; Rosi G Dagit; Katy S Delaney; Brad M Glorioso; Lee B Kats; Patrick M Kleeman; Christopher A Pearl; Carlton J Rochester; Seth PD Riley; Mark F Roth; Brent H Sigafus
Date: 2018-08 | Outlet: Nature Communications
We quantified the response of amphibian communities to climatic variability across the United States and Canada using more than 500,000 observations for 81 species across 86 study areas. We estimated the relationships between annual variation in climate variables and local colonization and persistence probabilities across more than 5000 surveyed sites. This allowed us to estimate sensitivity to change in five climate variables. Climate sensitivity differs greatly among eco-regions and depends on local climate, species life-history, and phylogeny. Local species richness was especially sensitive to changes in water availability during breeding and changes in winter temperature. These results allowed us to ask whether changing climate explains strong overall rates of decline in species richness observed in our data set. We found that recent change in the climate variables we measured does not explain why North American amphibian richness is rapidly declining, but does explain why some populations decline faster than others.&#8195;
Papers & Reports Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits
Authors: Kelly L Smalling; Chauncey W Anderson; R K Honeycutt; I M Cozzarelli,; Todd Preston; Blake R Hossack
Date: 2019-02-22 | Outlet: Environmental Pollution
Energy production in the Williston Basin, located in the Prairie Pothole Region of central North America, has increased rapidly over the last several decades. Advances in disposal practices of saline wastewaters (brines) co-produced during energy production have reduced ecological risks, but spills still occur often and legacy practices of releasing brines into the environment caused persistent salinization in many areas. Aside from sodium and chloride, these brines contain elevated concentrations of heavy metals, ammonium, volatile organic compounds, hydrocarbons and radionuclides. Amphibians are especially sensitive to chloride but interactions among other environmental pollutants are possible wetlands contaminated by brines. We collected bed sediment and larval amphibians (Ambystoma mavortium, Lithobates pipiens and Pseudacris maculata) from wetlands in Montana and North Dakota representing a range of brine contamination history and severity to determine if contamination was associated with metal concentrations in sediments and if metal accumulation in tissues varied by species and feeding traits. Brine contamination was positively associated with the concentrations of sodium and strontium in sediments and negatively correlated with mercury. However, concentrations of several metals were correlated with differences in feeding traits (grazers vs. predators), which suggests frequent contact with the sediments could lead to greater ingestion of metal-laden materials. Although many of these metals may not be directly linked with energy development, the potential additive or synergistic effects of exposure along with elevated chloride from brines could have important consequences for aquatic organisms. To effectively manage amphibian populations in wetlands contaminated by saline wastewaters we need a more robust understanding of how life history traits, species-specific susceptibilities and the physical-chemical properties of metals co-occurring in wetland sediments interact with other stressors like chloride and wetland drying.