Search ARMI Database
Search term(s)
Contribution Number
Search Results
145 record(s) found.
Papers & Reports Using life history traits to assess climate change vulnerability in understudied species
Authors: Ross K Hinderer; Blake R Hossack; Lisa A Eby
Outlet: Integrative Zoology
Climate change is a primary threat to biodiversity, but for many species, we still lack information required to assess their relative vulnerability to changes. Climate change vulnerability assessment (CCVA) is a widely used technique to rank relative vulnerability to climate change based on species characteristics, such as their distributions, habitat associations, environmental tolerances, and life-history traits. However, for species that we expect are vulnerable to climate change yet are understudied, like many amphibians, we often lack information required to construct CCVAs using existing methods. We used the CCVA framework to construct trait-based models based on life history theory, using empirical evidence of traits and distributions that reflected sensitivity of amphibians to environmental perturbation. We performed CCVAs for amphibians in 7 states in the north-central USA, focusing on 31 aquatic-breeding species listed as species of greatest conservation need by at last 1 state. Because detailed information on habitat requirements is unavailable for most amphibian species, we used species distributions and information on traits expected to influence vulnerability to a drying climate (e.g., clutch size and habitat breadth). We scored species vulnerability based on changes projected for mid-century (2040?2069) from 2 climate models representing “least-dry” and “most-dry” scenarios for the region. Species characteristics useful for discriminating vulnerability in our models included small range size, small clutch size, inflexible diel activity patterns, and smaller habitat breadth. When projected climate scenarios included a mix of drier and wetter conditions in the future, the exposure of a species to drying conditions was most important to relative rankings. When the scenario was universally drier, species characteristics were more important to relative rankings. Using information typically available even for understudied species and a range of climate projections, our results highlight the potential of using life history traits as indicators of relative climate vulnerability. The commonalities we identified provide a framework that can be used to assess other understudied species threatened by climate change.
Papers & Reports Effects of harmful algal blooms on amphibians and reptiles are underreported and underrepresented
Authors: Brian J Tornabene; Kelly L Smalling; Blake R Hossack
Date: 2024-07-05 | Outlet: Environmental Toxicology & Chemistry
Harmful algal blooms (HABs) are a persistent and increasing problem globally, yet we still have a limited knowledge about how they affect many wildlife. Although semi-aquatic and aquatic amphibians and reptiles have experienced large declines and occupy environments where HABs are increasingly problematic, their vulnerability to HABs remains unclear. To inform monitoring, management, and future studies, we conducted a literature review and synthesized studies and reported mortality events describing effects of cyanotoxins from HABs on freshwater herpetofauna. Our review identified 37 unique studies and 71 endpoints (no-observed-effect and lowest-observed-effect concentrations) involving 11 amphibian and three reptile species worldwide. Responses varied widely among studies, species, and concentrations used in experiments. Concentrations causing lethal and sublethal effects in experiments were generally 1–100 µg/L, which is near the mean value of reported events but 70times less than the maximum cyanotoxin concentrations reported in the environment. However, one species of amphibian was tolerant to concentrations of 10,000 µg/L, demonstrating potentially immense differences in sensitivities. Most studies focused on microcystin-LR (MC-LR), which can increase systemic inflammation and harm the digestive system, reproductive organs, liver and kidneys, and development. The few studies on other cyanotoxins illustrated that effects resembled those of MC-LR at similar concentrations, but more research is needed to describe effects. All experimental studies were on larval and adult amphibians; there were no such studies on reptiles. Experimental work with reptiles and adult amphibians is needed to clarify thresholds of tolerance. Only nine mortality events were reported, mostly for reptiles. Given that amphibians likely decay faster than reptiles, which have tissues that resists decomposition, mass amphibian mortality events from HABs have likely been underreported. We propose seven major areas to focus future efforts to enhance our understanding of effects and monitoring of HABs on herpetofauna that fill important roles in freshwater and terrestrial environments.
Papers & Reports Critical review of the phytohemagglutinin assay for assessing amphibian immunity
Authors: Lauren Hawley; Kelly L Smalling; Scott Glaberman
Date: 2023-12-12 | Outlet: Conservation Physiology
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, from genetics and stress to pollution and climate change, can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the field and in the laboratory. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians in order to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians as a whole. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Papers & Reports Adjacent and downstream effects of forest harvest on the distribution and abundance of larval headwater stream amphibians in the Oregon Coast Range
Authors: Adam Duarte; Nathan D Chelgren; Jennifer C Rowe; Christopher A Pearl; Sherri L. Johnson; Michael J Adams
Date: 2023-07-21 | Outlet: Forest Ecology and Management
Forest harvest is a primary landscape-scale management action affecting riparian forests. Although concerns about impacts of forest harvest on stream amphibians is generally limited to areas adjacent to harvest, there is a paucity of information regarding potential downstream effects of forest harvest on these species. We designed a before-after, control-impact (BACI) experiment to quantify potential impacts of clearcut logging that included 12-m buffers or smaller variable-width buffers on the distribution and abundance of headwater stream amphibians in adjacent and downstream areas. We sampled larval coastal tailed frogs (Ascaphus truei), coastal giant salamanders (Dicamptodon tenebrosus), and Columbia torrent salamanders (Rhyacotriton kezeri) across 3,915 sampling occasions that spanned 13 study reaches in 2008–2011 (pre-harvest) and 2013–2016 (post-harvest) as part of the Trask River Watershed Study in the Oregon Coast Range, U.S.A. We analyzed these data using occupancy models to estimate occupancy and (when possible) relative abundance, while accounting for various sources of imperfect detection. All species exhibited reduced occupancy adjacent to clearcuts with variable-width buffers (odds ratios [ORs] ranged = 0.24–0.48), and these negative impacts were not always diminished when increasing the buffer size to 12 m (ORs ranged = 0.20–3.56). Dicamptodon tenebrosus was the only species to have occupancy impacted in downstream areas, and this negative impact was related to clearcut logging with uniform 12-m buffers (OR = 0.60). This species was also the only species to have abundance negatively impacted by forest harvest in downstream areas (OR = https://0.41 with uniform 12-m buffers, OR = https://0.38 with variable-width buffers), albeit impacts to abundance were not evaluated for R. kezeri. Ascaphus truei abundance increased in areas downstream of clearcut logging with uniform 12-m buffers (OR = 2.92). Although we found the direction and magnitude of responses varied by species, our study confirms that clearcut logging can have negative impacts on amphibians that inhabit the adjacent stream areas. Perhaps more importantly, we also found that forest harvest can have negative effects on stream amphibians downstream of the harvested area and that increasing the buffer size to 12 m did not necessarily diminish these impacts in adjacent and downstream areas. Altogether, our study provides a nuanced picture of adjacent and downstream effects of forest harvest on three endemic headwater stream amphibians, and our findings demonstrate that forest management practices should consider downstream effects on aquatic taxa when assessing the impact of harvesting trees near headwater streams.
Papers & Reports Broad-scale Assessment of Methylmercury in Adult Amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; Colleen S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science & Technology
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats, including contaminants. While the bi-phasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used non-lethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67) whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broadscale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for non-lethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify potential threats of MeHg to amphibians.
Papers & Reports Assay validation of saliva glucocorticoids in Columbia Spotted Frogs and effects of handling and marking
Authors: Brian J Tornabene; Blake R Hossack; Creagh W Breuner
Date: 2023-10-13 | Outlet: Conservation Physiology: Toolbox
Non-invasive methods are important to conservation physiology to reduce negative effects on the species being studied. Glucocorticoid (GC) hormones are often used to assess health of individuals, but collection methods can be invasive. Many amphibians are imperiled worldwide, and saliva is a non- or semi-invasive matrix to measure GCs that has been partially validated for only four amphibian species. Validation ensures that assays are reliable and can detect changes in saliva corticosterone (sCORT) following exposure to stressors, but it is also necessary to ensure sCORT concentrations are correlated with plasma concentrations. To help validate the use of saliva in assessing CORT responses in amphibians, we captured uniquely marked Columbia Spotted Frogs (Rana luteiventris) on sequential days and collected baseline and stress-induced (after handling) samples. For a subset of individuals, we collected and quantified CORT in both saliva and blood samples, which have not been compared for amphibians. We tested several aspects of CORT responses and, by collecting across separate days, measured repeatability of CORT responses across days. We also evaluated whether methods common to amphibian conservation, such as handling alone or handling, clipping a toe, and tagging elevated sCORT. Similar to previous studies, we show that sCORT is reliable concerning parallelism, recovery, precision, and sensitivity. Saliva CORT was weakly correlated with plasma CORT (R2 = 0.21), and we detected elevations in sCORT after handling, demonstrating biological validation. Toe-clipping and tagging did not increase sCORT over handling alone, but repeated handling elevated sCORT for ~72 hours. However, sCORT responses were highly variable and repeatability was low within individuals and among capture sessions, contrary to previous studies with urinary and waterborne CORT. Saliva CORT is a semi-invasive and rapid technique that could be useful to assess effects of anthropogenic change, and conservation efforts, but will require careful study design and future validation.
Papers & Reports Successful eradication of invasive American bullfrogs leads to co-extirpation of emerging pathogens
Authors: Blake R Hossack; D Hall; C L Crawford; Caren S Goldberg; Erin Muths; Brent H Sigafus; Thierry C Chambert
Date: 2023 | Outlet: Conservation Letters
Interventions of host-pathogen dynamics provide strong tests of relationships, yet they are still rarely applied across multiple populations. After American Bullfrogs (Rana catesbeiana) invaded a wildlife refuge where federally threatened Chiricahua Leopard Frogs (R. chiricahuensis) were reintroduced 12 years prior, managers launched a landscape-scale eradication effort to help ensure continued recovery of the native species. We used a before-after-control-impact (BACI) design and environmental DNA sampling of 19 eradication sites and 18 control sites between fall 2016 and winter 2020–2021 to measure community-level responses to bullfrog eradication, including for 2 pathogens. Dynamic occupancy models revealed successful eradication from 94% of treatment sites. Native amphibians did not respond to bullfrog eradication, but the pathogens amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranaviruses were co-extirpated with bullfrogs. Our spatially replicated experimental approach provides strong evidence that management of invasive species can simultaneously reduce predation and disease risk for imperiled species.
Papers & Reports Broad-scale assessment of methylmercury in adult amphibians
Authors: Brian J Tornabene; Blake R Hossack; Brian J Halstead; Collin A Eagles-Smith; Michael J Adams; Adam R Backlin; Adrianne B Brand; C S Emery; Robert N Fisher; Jill Fleming; Brad M Glorioso; Daniel A Grear; Evan HC Grant; Patrick M Kleeman; David AW Miller; Erin Muths; Christopher A Pearl; Jennifer C Rowe; Caitlin T Rumrill; Hardin J Waddle; Megan E Winzeler; Kelly L Smalling
Date: 2023-10-30 | Outlet: Environmental Science and Technology 57:17511-17521
Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown. We used nonlethal sampling to assess MeHg bioaccumulation in 3,241 juvenile and adult amphibians during 2017–2021. We sampled 26 populations (14 species) across 11 states in the United States, including several imperiled species that could not have been sampled by traditional lethal methods. We examined whether life history traits of species and whether the concentration of total mercury in sediment or dragonflies could be used as indicators of MeHg bioaccumulation in amphibians. Methylmercury contamination was widespread, with a 33-fold difference in concentrations across sites. Variation among years and clustered subsites was less than variation across sites. Life history characteristics such as size, sex, and whether the amphibian was a frog, toad, newt, or other salamander were the factors most strongly associated with bioaccumulation. Total Hg in dragonflies was a reliable indicator of bioaccumulation of MeHg in amphibians (R2 ? 0.67), whereas total Hg in sediment was not (R2 ? 0.04). Our study, the largest broad-scale assessment of MeHg bioaccumulation in amphibians, highlights methodological advances that allow for nonlethal sampling of rare species and reveals immense variation among species, life histories, and sites. Our findings can help identify sensitive populations and provide environmentally relevant concentrations for future studies to better quantify the potential threats of MeHg to amphibians.
Papers & Reports Population Dynamics of the Threatened Oregon Spotted Frog (Rana pretiosa) Before and After Drought Mitigation
Authors: Jennifer C Rowe; Christopher A Pearl; Adam Duarte; Brome McCreary; Michael J Adams
Date: 2023-09-22 | Outlet: The Journal of Wildlife Management
Amphibians are among the most sensitive taxa to climate change, and species inhabiting arid and semiarid landscapes at the extremes of their range are especially vulnerable to drought. The Jack Creek, Oregon, USA, population of Oregon spotted frogs (Rana pretiosa) faces unique challenges because it occupies the highest elevation site in the species' extant range and one that has been transformed by loss of American beavers (Castor canadensis[/]), which historically maintained open water. We evaluated the effects of drought mitigation (addition of excavated ponds) on relationships between local and regional water availability, inactive legacy beaver dams, and Oregon spotted frog population dynamics in the Jack Creek system. We conducted egg mass surveys and capture-mark-recapture sampling at a treatment reach with excavated ponds and 3 reference reaches over 13 years; surveys spanned a period before and after pond excavation at the treatment and 1 primary comparison reference reach. We analyzed data using a combination of robust design capture-mark-recapture estimators and generalized linear mixed models to characterize population dynamics. Adult Oregon spotted frog survival was approximately 19.5% higher at the treatment reach than the primary reference reach during the study period. Annual survival was most strongly associated with late summer vegetation greenness, a proxy for water availability, and males had higher survival than females. Among the 4 study reaches, the treatment reach consistently had higher late summer vegetation greenness, and the hydrology functioned more independently of regional precipitation patterns relative to the reference reaches; however, these dynamics were not linked to pond excavation. Breeding was concentrated in 2 legacy beaver ponds that were deepened by excavation during the study compared to an unexcavated beaver pond, 2 excavated ponds without legacy beaver dams, and 9 reference ponds. These results point to the benefit of enhancing existing beaver structures and indicate that management actions aimed at maintaining surface water for breeding in spring and saturated soils and ponded water for adults in late summer would benefit this unique population of Oregon spotted frogs in the face of drought.
Papers & Reports Research Needs to Inform Amphibian Conservation in the Anthropocene
Authors: Evan HC Grant; Staci M Amburgey; Brian Gratwicke; Victor Acosta Chaves; Anat M Belasen; David Bickford; Carsten Bruhl; Natalie E Calatayud; Nick Clemann; Simon Clulow; Jeff Dawson; David A DeAngelis; Kenneth C Dodd; Annette Evans; Gentile Francesco Ficetola; Mattia Falaschi; Sergio Gonzalez-Mollinedo; D M Green; Roseanna Gamlen-Greene; Richard A Griffiths; Brian J Halstead; Craig Hassapakis; Geoffrey Heard; Catharina Karlsson; Tom Kirschey; Brittany A Kosch; Sophia Kusterko Novaes; Luke Linhoff; John C Maerz; Brittany A Mosher; Katherine M O'Donnell; Leticia M Ochoa-Ochoa; J D Roberts; A Silla; Tariq Stark; Jeanne Tarrant; R Upton; Judit Voros; Erin Muths
Date: 2023 | Outlet: Conservation Science and Practice
The problem of global amphibian declines has prompted extensive research over the last three decades; initially the focus was on identifying and characterizing the extent of the problem, but more recently efforts have shifted to evidence-based research designed to improve conservation outcomes. Using input from participants at the 9th World Congress of Herpetology, a US Geological Survey Powell Center symposium, amphibian listservs, the IUCN Assisted Reproductive Technologies and Gamete Biobanking group, and respondents to a survey, we developed a list of 25 priority research questions for amphibian conservation at this stage of the Anthropocene. These research needs represent critical knowledge gaps for amphibian conservation.
Papers & Reports Complex life histories alter patterns of mercury exposure and accumulation in linked aquatic-terrestrial food webs: an amphibian example
Authors: Freya Rowland; Erin Muths; Collin A Eagles-Smith; craig stricker; Johanna M Kraus; Rachel Harrington; David M Walters
Date: 2022-12-31 | Outlet: Environmental Science and Technology
Quantifying how contaminants change across life cycles of species who undergo metamorphosis is critical to assessing risk to organisms and their consumers. Pond-breeding amphibians can dominate aquatic animal biomass as larvae and are terrestrial prey as metamorphs and adults. Thus, amphibians can be vectors of mercury accumulation in both aquatic and terrestrial food webs. However, it is still unclear how mercury concentrations are affected by exogenous (e.g., habitat or diet) vs. endogenous factors (e.g., catabolism during hibernation) as amphibians undergo large diet shifts and periods of fasting during ontogeny. We measured total mercury (THg), methylmercury (MeHg), and isotopic compositions (?13C, ?15N) in boreal chorus frogs (Pseudacris maculata) across five life stages in two metapopulations in Colorado, USA. We found large differences in MeHg concentrations and percent of THg as MeHg among life stages. Frog MeHg concentrations spiked after metamorphosis and hibernation coinciding with the most energetically demanding stages of their life cycle. Transitions among life stages led to large step changes in mercury concentrations – the endogenous processes of metamorphosis and hibernation biomagnified MeHg, decoupling isotopic compositions and MeHg concentrations. These step changes are not often considered in conventional expectations of how food web processes predict trophic transfer, accumulation, and transport of contaminants. ?
Papers & Reports Disentangling direct and indirect effects of extreme events on coastal wetland communities
Authors: Courtney L Davis; Susan C Walls; William J Barichivich; Mary E Brown; David AW Miller
Date: 2022-12-16 | Outlet: Journal of Animal Ecology
1. One of the primary ways in which climate change will impact coastal freshwater wetlands is through changes in the frequency, intensity, timing, and distribution of extreme weather events. Disentangling the direct and indirect mechanisms of population- and community-level responses to extreme events is vital to predicting how species composition of coastal wetlands will change under future conditions.
2. We extended static structural equation modeling approaches to incorporate system dynamics in a multi-year multispecies occupancy model to quantify the effects of extreme weather events on a coastal freshwater wetland system.
3. We used data from an 8-year study (2009 to 2016) on St. Marks National Wildlife Refuge in Florida, USA, to quantify species-specific and community-level changes in amphibian and fish occupancy associated with two flooding events in 2012 and 2013. We examine how physical changes to the landscape, including potential changes in salinity and increased wetland connectivity, may have contributed to or exacerbated the effects of these extreme weather events on the biota of isolated coastal wetlands.
4. We provide evidence that the primary effects of flooding on the amphibian community were through indirect mechanisms via changes in the composition of the sympatric fish community that may have had lethal (i.e., through direct predation) or non-lethal (i.e., through direct or indirect competitive interactions) effects. In addition, we shown that amphibian species differed in their sensitivity to direct flooding effects and indirect changes in the fish community and wetland specific conductance, which led to variable responses across the community. These effects led to the overall decline in amphibian species richness from 2009 to 2016, suggesting that wetland-breeding amphibian communities on St. Marks may not be resilient to predicted changes in coastal disturbance regimes as a result of climate change.
5. Understanding both direct and indirect effects, as well as species interactions, is important for predicting the effects of a changing climate on individual species, communities, and ecosystems.
2. We extended static structural equation modeling approaches to incorporate system dynamics in a multi-year multispecies occupancy model to quantify the effects of extreme weather events on a coastal freshwater wetland system.
3. We used data from an 8-year study (2009 to 2016) on St. Marks National Wildlife Refuge in Florida, USA, to quantify species-specific and community-level changes in amphibian and fish occupancy associated with two flooding events in 2012 and 2013. We examine how physical changes to the landscape, including potential changes in salinity and increased wetland connectivity, may have contributed to or exacerbated the effects of these extreme weather events on the biota of isolated coastal wetlands.
4. We provide evidence that the primary effects of flooding on the amphibian community were through indirect mechanisms via changes in the composition of the sympatric fish community that may have had lethal (i.e., through direct predation) or non-lethal (i.e., through direct or indirect competitive interactions) effects. In addition, we shown that amphibian species differed in their sensitivity to direct flooding effects and indirect changes in the fish community and wetland specific conductance, which led to variable responses across the community. These effects led to the overall decline in amphibian species richness from 2009 to 2016, suggesting that wetland-breeding amphibian communities on St. Marks may not be resilient to predicted changes in coastal disturbance regimes as a result of climate change.
5. Understanding both direct and indirect effects, as well as species interactions, is important for predicting the effects of a changing climate on individual species, communities, and ecosystems.
Papers & Reports Compensatory recruitment unlikely in high elevation amphibian populations challenged with disease
Authors: Bennett Hardy; Erin Muths; Brad A Lambert; S C Schneider; W C Funk; Larissa L Bailey
Date: 2022-07-12 | Outlet: Journal of Applied Ecology
1. Understanding the causes of population variation in host response to disease, and the mechanisms of persistence, can serve as vital information for species conservation. One such mechanism of population persistence that has gained support is the demographic process of compensatory recruitment. Host populations may persist by increasing recruitment to compensate for reduced survival due to infection, thus limiting the negative effects of the disease on population trajectories. However, high elevation populations are inherently vulnerable to stochastic processes and may be limited in their ability to exhibit compensatory recruitment relative to lower elevation populations.
2. We use long-term mark-recapture data from five populations of boreal toads (Anaxyrus boreas boreas ), across an elevational gradient in Colorado, before and after pathogen arrival to assess whether populations can persist with Batrachochytrium dendrobatidis (Bd) via compensatory recruitment.
3. Prior to pathogen arrival, we found a life history tradeoff between survival and recruitment across elevations, where high elevation toads have high survival but lower recruitment and vice versa at lower elevations.
4. Pathogen arrival had a strong negative effect on apparent annual survival and recruitment leading to negative population growth rates and dramatically reduced host abundances. The data did not support the occurrence of compensatory recruitment.
5. Synthesis and applications. Our unique dataset indicates that demographic responses to pathogens may be environmentally (i.e., elevationally) context-dependent and highlights the value of long-term monitoring. We recommend that practitioners verify that potential persistence mechanisms occur across multiple populations and relevant environmental gradients to counter any assumptions of the mechanism existing species-wide. Quantifying variation in population responses to disease will aid in understanding the bounds of such persistence mechanisms and identify particularly vulnerable populations where mechanisms are non-existent.
2. We use long-term mark-recapture data from five populations of boreal toads (Anaxyrus boreas boreas ), across an elevational gradient in Colorado, before and after pathogen arrival to assess whether populations can persist with Batrachochytrium dendrobatidis (Bd) via compensatory recruitment.
3. Prior to pathogen arrival, we found a life history tradeoff between survival and recruitment across elevations, where high elevation toads have high survival but lower recruitment and vice versa at lower elevations.
4. Pathogen arrival had a strong negative effect on apparent annual survival and recruitment leading to negative population growth rates and dramatically reduced host abundances. The data did not support the occurrence of compensatory recruitment.
5. Synthesis and applications. Our unique dataset indicates that demographic responses to pathogens may be environmentally (i.e., elevationally) context-dependent and highlights the value of long-term monitoring. We recommend that practitioners verify that potential persistence mechanisms occur across multiple populations and relevant environmental gradients to counter any assumptions of the mechanism existing species-wide. Quantifying variation in population responses to disease will aid in understanding the bounds of such persistence mechanisms and identify particularly vulnerable populations where mechanisms are non-existent.
Papers & Reports Cryptic declines of small, cold-water specialists highlight potential vulnerabilities of headwater streams as climate refugia
Authors: Blake R Hossack; M LeMoine; Emily B Oja; Lisa A Eby
Date: 2023 | Outlet: Biological Conservation
Increasing temperatures and climate-driven disturbances like wildfire are a growing threat to many species,
including cold-water specialists. Montane areas and cold streams are often considered climate refugia that buffer
communities against change. However, climate refugia are often species-specific, and despite growing awareness
that life histories and habitat requirements shape responses to change, small or non-game species are often
under-represented in monitoring and planning programs. A recent study in Montana, USA, revealed much larger
warming-related declines in occupancy for small, non-game slimy sculpin (Cottus cognatus) between 1993 and
1995 and 2011–2013 than for two socially valued salmonid fishes that shape regional conservation efforts. To
broaden insight into climate change vulnerabilities of headwater stream communities, we analyzed data for
Rocky Mountain tailed frogs (Ascaphus montanus) that were collected during those same electrofishing surveys
for fishes from 241 stream reaches. Tailed frogs occupy small, cold streams and have several life-history traits
that make them sensitive to environmental change. We used a Bayesian framework to estimate occupancy,
colonization, and extinction dynamics relative to forest canopy, estimated stream temperature, and wildfire
effects. Tailed frog occupancy decreased by 19 % from 1993 to 1995 to 2011–2013. Changes in occupancy were
linked with increased extinction and reduced colonization where there were fire-driven reductions in canopy
cover, and reduced colonization of stream reaches that warmed on average 0.8 ?C during the study. Our results
highlight extensive extirpations for oft-overlooked species and emphasize the importance of including species
with diverse habitat requirements and life histories in conservation planning.
including cold-water specialists. Montane areas and cold streams are often considered climate refugia that buffer
communities against change. However, climate refugia are often species-specific, and despite growing awareness
that life histories and habitat requirements shape responses to change, small or non-game species are often
under-represented in monitoring and planning programs. A recent study in Montana, USA, revealed much larger
warming-related declines in occupancy for small, non-game slimy sculpin (Cottus cognatus) between 1993 and
1995 and 2011–2013 than for two socially valued salmonid fishes that shape regional conservation efforts. To
broaden insight into climate change vulnerabilities of headwater stream communities, we analyzed data for
Rocky Mountain tailed frogs (Ascaphus montanus) that were collected during those same electrofishing surveys
for fishes from 241 stream reaches. Tailed frogs occupy small, cold streams and have several life-history traits
that make them sensitive to environmental change. We used a Bayesian framework to estimate occupancy,
colonization, and extinction dynamics relative to forest canopy, estimated stream temperature, and wildfire
effects. Tailed frog occupancy decreased by 19 % from 1993 to 1995 to 2011–2013. Changes in occupancy were
linked with increased extinction and reduced colonization where there were fire-driven reductions in canopy
cover, and reduced colonization of stream reaches that warmed on average 0.8 ?C during the study. Our results
highlight extensive extirpations for oft-overlooked species and emphasize the importance of including species
with diverse habitat requirements and life histories in conservation planning.
Papers & Reports Empirical evidence for effects of invasive American Bullfrogs on occurrence of native amphibians and emerging pathogens
Authors: Blake R Hossack; Emily B Oja; Audrey Owens; D Hall; C L Crawford; Caren S Goldberg; S Hedwall; J A Lemos-Espinal; S MacVean; Magnus McCaffery; Erin Muths; A McCall; C Mosley; Brent H Sigafus; M J Sredl,; James C Rorabaugh
Date: 2023 | Outlet: Ecological Applications
Invasive species and emerging infectious diseases are two of the greatest
threats to biodiversity. American Bullfrogs (Rana [Lithobates] catesbeiana),
which have been introduced to many parts of the world, are often linked with
declines in native amphibians via predation and the spread of emerging pathogens
such as amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd])
and ranaviruses. Although many studies have investigated the potential role of
bullfrogs in the decline of native amphibians, analyses that account for shared
habitat affinities and imperfect detection have found limited support for
clear effects. Similarly, the role of bullfrogs in shaping the patch-level distribution
of pathogens is unclear. We used eDNA methods to sample 233 sites in the southwestern USA and Sonora, Mexico (2016–2018) to estimate how
the presence of bullfrogs affects the occurrence of four native amphibians,
Bd, and ranaviruses. Based on two-species, dominant-subordinate occupancy
models fitted in a Bayesian context, federally threatened Chiricahua Leopard
Frogs (Rana chiricahuensis) and Western Tiger Salamanders (Ambystoma
mavortium) were eight times (32% vs. 4%) and two times (36% vs. 18%), respectively,
less likely to occur at sites where bullfrogs occurred. Evidence for the
negative effects of bullfrogs on Lowland Leopard Frogs (Rana yavapaiensis)
and Northern Leopard Frogs (Rana pipiens) was less clear, possibly because of
smaller numbers of sites where these native species still occurred and because
bullfrogs often occur at lower densities in streams, the primary habitat for
Lowland Leopard Frogs. At the community level, Bd was most likely to occur
where bullfrogs co-occurred with native amphibians, which could increase the
risk to native species. Ranaviruses were estimated to occur at 33% of bullfrogonly
sites, 10% of sites where bullfrogs and native amphibians co-occurred,
and only 3% of sites where only native amphibians occurred. Of the 85 sites
where we did not detect any of the five target amphibian species, we also did
not detect Bd or ranaviruses; this suggests other hosts do not drive the distribution
of these pathogens in our study area. Our results provide landscape-scale
evidence that bullfrogs reduce the occurrence of native amphibians and
increase the occurrence of pathogens, information that can clarify risks and
aid the prioritization of conservation actions.
threats to biodiversity. American Bullfrogs (Rana [Lithobates] catesbeiana),
which have been introduced to many parts of the world, are often linked with
declines in native amphibians via predation and the spread of emerging pathogens
such as amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd])
and ranaviruses. Although many studies have investigated the potential role of
bullfrogs in the decline of native amphibians, analyses that account for shared
habitat affinities and imperfect detection have found limited support for
clear effects. Similarly, the role of bullfrogs in shaping the patch-level distribution
of pathogens is unclear. We used eDNA methods to sample 233 sites in the southwestern USA and Sonora, Mexico (2016–2018) to estimate how
the presence of bullfrogs affects the occurrence of four native amphibians,
Bd, and ranaviruses. Based on two-species, dominant-subordinate occupancy
models fitted in a Bayesian context, federally threatened Chiricahua Leopard
Frogs (Rana chiricahuensis) and Western Tiger Salamanders (Ambystoma
mavortium) were eight times (32% vs. 4%) and two times (36% vs. 18%), respectively,
less likely to occur at sites where bullfrogs occurred. Evidence for the
negative effects of bullfrogs on Lowland Leopard Frogs (Rana yavapaiensis)
and Northern Leopard Frogs (Rana pipiens) was less clear, possibly because of
smaller numbers of sites where these native species still occurred and because
bullfrogs often occur at lower densities in streams, the primary habitat for
Lowland Leopard Frogs. At the community level, Bd was most likely to occur
where bullfrogs co-occurred with native amphibians, which could increase the
risk to native species. Ranaviruses were estimated to occur at 33% of bullfrogonly
sites, 10% of sites where bullfrogs and native amphibians co-occurred,
and only 3% of sites where only native amphibians occurred. Of the 85 sites
where we did not detect any of the five target amphibian species, we also did
not detect Bd or ranaviruses; this suggests other hosts do not drive the distribution
of these pathogens in our study area. Our results provide landscape-scale
evidence that bullfrogs reduce the occurrence of native amphibians and
increase the occurrence of pathogens, information that can clarify risks and
aid the prioritization of conservation actions.
Papers & Reports Future changes in habitat availability for two specialist snake species in the imperiled rocklands of South Florida, U.S.A
Authors: Suresh C. Subedi; Susan C Walls; William J Barichivich; Ryan Boyles; Michael S. Ross; J Aa Hogan; John A Tupy
Date: 2022-08-30 | Outlet: Conservation Science and Practice
Rockland habitat in South Florida, USA, is a threatened ecosystem that has been lost, fragmented, or degraded because of urbanization or other anthropogenic disturbance. Furthermore, low-lying islands and coastal areas are experiencing sea-level rise (SLR) and an increased frequency and intensity of tidal flooding, putting rockland habitats there at increasing risk of ecological change. We evaluated changes in the extent of rockland habitat under various scenarios of future SLR, tidal flooding, and human development for two endemic state-listed threatened species of snakes, the Rim Rock Crowned Snake (Tantilla oolitica) and the Key Ring-necked Snake (Diadophis punctatus acricus). Both snakes are restricted to South Florida. We used recent and historical species’ records to determine each species’ habitat range. We then estimated the extent of future habitat loss due to SLR and continued human development, as well as degradation of the remaining habitat. We also asked whether the future potential drivers of habitat loss and degradation differ between the two species and across their habitat ranges. We predicted that saltwater intrusion could negatively affect rocklands by 2050, resulting in degradation of 80% of the existing habitat because of an anticipated 42 cm of SLR. Moreover, short-term stochastic events such as storm surge and high tides will increasingly saturate the root zone of rockland vegetation before complete inundation. Most of the rockland habitat used by these two species of snakes will be inundated by 2080. Sea level rise will likely change current rocklands into more halophytic habitat (mangrove or salt marsh wetland) within 50 to 60 years. As much as 47% of rockland habitat will be lost due to human development by 2030. Therefore, immediate mitigation actions may be needed to conserve specialist species within rockland habitat that is threatened by human activities and climate change.
Papers & Reports Looking ahead, guided by the past: The role of U.S. national parks in amphibian research and conservation
Authors: Brian J Halstead; Andrew M Ray; Erin Muths; Evan HC Grant; Rob L Grasso; Michael J Adams; Katy S Delaney; Jane Carlson; Blake R Hossack
Date: 2022-03 | Outlet: Ecological Indicators
Protected areas like national parks are essential elements of conservation because they limit human influence on the landscape, which protects biodiversity and ecosystem function. The role of national parks in conservation, however, often goes far beyond limiting human influence. The U.S. National Park Service and its system of land units contribute substantively to conservation by providing protected lands where researchers can document trends in species distributions and abundances, examine characteristics important for generating these trends, and identify and implement conservation strategies to preserve biodiversity. We reviewed the contribution of U.S. national parks to amphibian research and conservation and highlight important challenges and findings in several key areas. First, U.S. national parks were instrumental in providing strong support that amphibian declines were real and unlikely to be simply a consequence of habitat loss. Second, research in U.S. national parks provided evidence against certain hypothesized causes of decline, like UV-B radiation, and evidence for others, such as introduced species and disease. However, describing declines and identifying causes contributes to conservation only if it leads to management; importantly, U.S. national parks have implemented many conservation strategies and evaluated their effectiveness in recovering robust amphibian populations. Among these, removal of invasive species, especially fishes; conservation translocations; and habitat creation and enhancement stand out as examples of successful conservation strategies with broad applicability. Successful management for amphibians is additionally complicated by competing mandates and stakeholder interests; for example, past emphasis on increasing visitor enjoyment by introducing fish to formerly fishless lakes had devastating consequences for many amphibians. Other potential conflicts with amphibian conservation include increasing development, increased risk of introductions of disease and exotic species with increased visitation, and road mortality. Decision science and leveraging partnerships have proven to be key components of effective conservation under conflicting mandates in national parks. As resource managers grapple with large-scale drivers that are outside local control, public-private partnerships and adaptive strategies are increasing in importance. U.S. national parks have played an important role in many aspects of identifying and ameliorating the amphibian decline crisis and will continue to be essential for the conservation of amphibians in the future.
Papers & Reports Identifying factors linked with persistence of reintroduced populations: lessons learned from 25 years of amphibian translocations
Authors: Blake R Hossack
Date: 2022 | Outlet: Global Ecology and Conservation
Most translocation efforts are unsuccessful, often for unknown reasons. We assessed factors linked with population persistence for 25 years of translocations of the federally threatened Chiricahua Leopard Frog. Local features were paramount, including habitat, predators, and restoration history. Timing and life stages stocked affected persistence, but rearing environment did not. Two or more translocations produced an approximate 4-yr increase in predicted population persistence.
Papers & Reports Energy-related wastewater contamination alters microbial communities of sediment, water, and amphibian skin
Authors: Brian J Tornabene; Kelly L Smalling; C E Givens; Emily B Oja; Blake R Hossack
Date: 2023-07-01 | Outlet: Science of the Total Environment
To inform responsible energy development, it is important to understand the ecological effects of contamination events. Wastewaters from oil and gas extraction often contain high concentrations of sodium chloride (NaCl) and heavy metals (e.g., strontium and vanadium), but studies of their influence on microbial communities are limited. We sampled water, sediment, and larval amphibian skin (four species) across a gradient of contamination (0.04–17500 mg/L Cl) in a large energy production area of North America. NaCl concentrations affected the similarity among microbiomes of water, sediment, and amphibian skin, but not the diversity or richness of water and skin microbiomes. Strontium concentrations were associated with lower diversity and richness of sediment microbial communities. Amphibian microbiomes were similar to those of water, but not sediment, and sediment microbiomes were similar to those of water. Species identity was the strongest predictor of amphibian microbiomes; frog microbiomes were similar but differed from that of the salamander, whose microbiome had the lowest richness and diversity. Understanding whether effects of wastewaters on microbial communities also influences their ecosystem function will be an important next step. Our study provides novel insight into associations among different wetland microbial communities and effects of wastewaters from energy production.
Papers & Reports Late-season movement and habitat use by Oregon spotted frog (Rana pretiosa) in a large reservoir in Oregon, USA
Authors: Christopher A Pearl; Jennifer C Rowe; Brome McCreary; Michael J Adams
Date: 2022-03-04 | Outlet: Journal of Herpetology
Dam-created reservoirs are common landscape features that can provide habitat for amphibians, but their water level fluctuations and nonnative predators can differ markedly from more natural habitats. We compared fall movement and habitat use by the Oregon Spotted Frog (Rana pretiosa) in the reservoir pool with nearby river and pond habitats at Crane Prairie Reservoir in central Oregon, USA. Movement rate of frogs in the river and ponds declined as water temperature cooled. Reservoir frogs moved further than those in the river or ponds, and their movement rate increased as water temperature cooled. Most frog locations across all site types were in aquatic herbaceous vegetation. We did not find shifts in habitat between early and late fall. Increased movement and the lack of habitat shift in our reservoir frogs deeper into fall contrast with R. pretiosa in non-reservoir sites in this study and others. Consistent use of vegetation by reservoir frogs throughout the fall could indicate cover use in presence of fish predators. Our study provides additional detail on the range of habitats used by R. pretiosa in fall and suggests areas for further work to improve survival in constructed sites with abundant fish predators.