Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

174 record(s) found.

Papers & Reports Conservation research across scales in a national program: how to be relevant to local management yet general at the same time
Authors: Michael J Adams; Erin Muths
Date: 2019-08 | Outlet: Biological Conservation 236:100-106
Successfully addressing complex conservation problems requires attention to pattern and process at multiple spatial scales. This is challenging from a logistical and organizational perspective. In response to indications of worldwide declines in amphibian populations, the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey was established in 2000. This national program is unique in its structure, organization, and success in integrating information at multiple scales. ARMI works under the principle that a good study design is tailored to specific questions, but stipulates the use of methods that result in unbiased parameter estimates (e.g., occupancy). This allows studies to be designed to address local questions but also to produce data that can easily be scaled up to accomplish the objectives of a broad-scale monitoring program. Here we describe how the implementation of the Amphibian Research and Monitoring Initiative results in research that is applicable across scales – global, in contributing to the understanding of amphibian decline phenomena; continental, in synthesizing local data to understand large-scale drivers; regional, by characterizing threats and assessing status of species at the range scale; and local, by working with National Park, Wildlife Refuge, and other Federal and State land managers to identify research needs and serve conservation-relevant research results to inform management decisions.
Papers & Reports Effect of amphibian chytrid fungus (Batrachochytrium dendrobatidis) on apparent survival of frogs and toads in the western USA
Authors: Robin E Russell; Brian J Halstead; Brittany A Mosher; Erin Muths; Michael J Adams; Evan HC Grant; Robert N Fisher; Patrick M Kleeman; Adam R Backlin; Christopher A Pearl; R K Honeycutt; Blake R Hossack
Date: 2019-08 | Outlet: Biological Conservation
Despite increasing interest in determining the population-level effects of emerging infectious diseases on wildlife, estimating effects of disease on survival rates remains difficult. Even for a well-studied disease such as amphibian chytridiomycosis (caused by the fungus Batrachochytrium dendrobatidis [Bd]), there are few estimates of how survival of wild hosts is affected. We applied hierarchical models to long-term capture-mark-recapture data (mean = 10.6 yrs, range = 6?15 yrs) from >5500 uniquely-marked individuals to estimate the effect of Bd on apparent survival of four threatened or endangered ranid frog species (Rana draytonii, R. muscosa, R. pretiosa, R. sierrae) at 14 study sites in California and Oregon (USA) and one bufonid toad (Anaxyrus boreas) at two study sites in Wyoming and Montana. Our models indicated that the presence of Bd on an individual reduced apparent survival of ranid frogs by ~6?15% depending on species and sex. The estimated difference between toads with and without Bd was 19% for the Montana population and 55% for the Wyoming population; however, the 95% Credible Interval of these estimates included zero. These results provide evidence for negative effects of Bd on survival in wild populations even in the absence of obvious die-offs. Determining what factors influence the magnitude of the effects of Bd on wildlife populations is an important next step toward identifying management actions. These estimates of Bd effects are important for understanding the extent and severity of disease, whether disease effects have changed over time, and for informing management actions.
Papers & Reports Distribution of tiger salamanders in northern Sonora, Mexico: comparison of sampling methods and possible implications for an endangered subspecies
Authors: Blake R Hossack; J A Lemos-Espinal; Brent H Sigafus; Erin Muths; A rr Carreon; M ar Toyos; F el Hurtado; P ad Molina; Caren S Goldberg; T R Jones,; M J Sredl,; Thierry C Chambert; James C Rorabaugh
Date: 2021 | Outlet: Amphibia-Reptilia
Many aquatic species in the arid USA-Mexico borderlands region are imperiled, but limited information on
distributions and threats often hinders management. To provide information on the distribution of the Western Tiger
Salamander (Ambystoma mavortium), including the USA-federally endangered Sonoran Tiger Salamander (Ambystoma
mavortium stebbinsi), we used traditional (seines, dip-nets) and modern (environmental DNA [eDNA]) methods to sample
91 waterbodies in northern Sonora, Mexico, during 2015-2018. The endemic Sonoran Tiger Salamander is threatened by
introgressive hybridization and potential replacement by another sub-species of theWestern Tiger Salamander, the non-native
Barred Tiger Salamander (A. m. mavortium). Based on occupancy models that accounted for imperfect detection, eDNA
sampling provided a similar detection probability (https://0.82 [95% CI: 0.56-0.94]) as seining (https://0.83 [0.46-0.96]) and much higher
detection than dip-netting (https://0.09 [0.02-0.23]). Volume of water filtered had little effect on detection, possibly because turbid
sites had greater densities of salamanders. Salamanders were estimated to occur at 51 sites in 3 river drainages in Sonora.
These results indicate tiger salamanders are much more widespread in northern Sonora than previously documented, perhaps
aided by changes in land and water management practices. However, because the two subspecies of salamanders cannot be
reliably distinguished based on morphology or eDNA methods that are based on mitochondrial DNA, we are uncertain if we
detected only native genotypes or if we documented recent invasion of the area by the non-native sub-species. Thus, there is
an urgent need for methods to reliably distinguish the subspecies so managers can identify appropriate interventions.
Papers & Reports Hanging by a Thread: Recovery of Reintroduced Chiricahua Leopard Frogs after Bullfrog Eradication in an Intensively Managed Landscape
Authors: Blake R Hossack; P E Howell; James C Rorabaugh; Erin Muths; Richard Chandler; Brent H Sigafus
Date: 2024 | Outlet: book chapter
Papers & Reports Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape
Authors: Christopher J Jarchow; Brent H Sigafus; Erin Muths; Blake R Hossack
Date: 2019-08 | Outlet: Wetlands
Many natural wetlands around the world have disappeared or been replaced, resulting in the dependence of many wildlife species on small, artificial earthen stock ponds. These ponds provide critical wildlife habitat, such that the accurate detection of water and assessment of inundation extent is required. We applied a full (linear spectral mixture analysis; LSMA) and partial (matched filtering; MF) spectral unmixing algorithm to a 2007 Landsat 5 and a 2014 Landsat 8 satellite image to determine the ability of a time-intensive (i.e., more spectral input; LSMA) vs. a more efficient (less spectral input; MF) spectral unmixing approach to detect and estimate surface water area of stock ponds in southern Arizona, USA and northern Sonora, Mexico. Spearman rank correlations (rs) between modeled and actual inundation areas less than a single Landsat pixel (< 900 m2) were low for both techniques (rs range = https://0.22 to 0.62), but improved for inundation areas > 900 m2 (rs range = https://0.34 to 0.70). Our results demonstrate that the MF approach can model ranked inundation extent of known pond locations with results comparable to or better than LSMA, but further refinement is required for estimating absolute inundation areas and mapping wetlands < 1 Landsat pixel.
Papers & Reports A statistical forecasting approach to metapopulation viability analysis
Authors: P E Howell; Blake R Hossack; Erin Muths; Brent H Sigafus; A Chenevert-Steffler; Richard Chandler
Date: 2020 | Outlet: Ecological Applications 2020:e02038
Conservation of at-risk species is aided by reliable forecasts of the consequences of environmental change and management actions on population viability. Forecasts from conventional population viability analysis (PVA) are made using a two-step procedure in which parameters are estimated, or elicited from expert opinion, and then plugged into a stochastic population model without accounting for parameter uncertainty. Recently-developed statistical PVAs differ because forecasts are made conditional on models that are fitted to empirical data. The statistical forecasting approach allows for uncertainty about parameters, but it has rarely been applied in metapopulation contexts where spatially-explicit inference is needed about colonization and extinction dynamics and other forms of stochasticity that influence metapopulation viability. We conducted a statistical metapopulation viability analysis (MPVA) using 11 years of data on the federally-threatened Chiricahua leopard frog to forecast responses to landscape heterogeneity, drought, environmental stochasticity, and management. We evaluated several future environmental scenarios and pond restoration options designed to reduce extinction risk. Forecasts over a 50-yr time horizon indicated that metapopulation extinction risk was <8% for all scenarios, but uncertainty was high. Without pond restoration, extinction risk is forecasted to be 5.6% (95% CI: 0?60%) by year 2060. Restoring six ponds by increasing hydroperiod reduced extinction risk to 1.0% (0 ? 11%) in year 2060. We found little evidence that drought influences metapopulation viability when managers have the ability to maintain ponds that hold water throughout the year and are free of invasive species. Our study illustrates the utility of the spatially explicit statistical forecasting approach to MPVA in conservation planning efforts.
Papers & Reports Survival cost to relocation does not reduce population self-sustainability in an amphibian
Authors: Hugo Cayuela; L Gillet; A Laudelout; Aurélien Besnard; Eric Bonnaire; Pauline Levionnois; Erin Muths; M Dufrene; T Kinet
Date: 2019-05 | Outlet: Journal of Applied Ecology
Relocations are increasingly popular among wildlife managers despite often low rates of relocation success in vertebrates. In this context, understanding the influence of extrinsic (e.g., relocation design, habitat characteristics) and intrinsic factors (e.g., age and sex) on demographic parameters, such as survival, that regulate the dynamics of relocated populations is critical to improve relocation protocols and better predict relocation success. We investigated survival rates in naturally established and relocated populations of yellow-bellied toads (Bombina variegata), an amphibian that was nearly extinct in Belgium by the late 1980s. We quantified survival at three ontogenetic stages (juvenile, subadult, and adult) in the relocated population, the source population, and a control population. In the relocated population, we quantified survival in captive bred individuals and their locally born descendants. Then, using simulations, we examined how survival cost to relocation affects the self-sustainability of the relocated population. We showed that survival at juvenile and subadult stages was relatively similar in all populations. In contrast, relocated adult survival was lower than adult survival in the source and control populations. Despite this, offspring of relocated animals (the next generation, regardless of life stage) survived at similar rates to individuals in the source and control populations. Simulations revealed that the relocated population was self-sustaining under different scenarios and that the fate (e.g., stability or increase) of the simulated populations was highly dependent on the fecundity of relocated adults and their offspring. our results indicate that survival in relocated individuals is lower than in non-relocated individuals but that this cost (i.e., reduced survival) disappears in the second generation. A finer understanding of how relocation affects demographic processes is an important step in improving relocation success of amphibians and other animals.
Papers & Reports Amphibian conservation in the Anthropocene
Authors: Evan HC Grant; Erin Muths; Benedikt R Schmidt; S Petrovan
Date: 2019-08 | Outlet: Biological Conservation 236 (2019) 543–547
Research is necessary to identify patterns in nature, to understand how a system functions, and to make predictions about the future state of an ecosystem. Applied research in conservation biology can identify effective strategies to maintain biodiversity, though many papers end with the conclusion that more research is needed. However, more research does not necessarily lead to solutions. We use the ongoing global decline of amphibians as a salient example to highlight limitations in current conservation research, and to focus on finding solutions which are directly relevant for conservation. While research has been conducted since declines were first detected in the 1990s, outside a few specific examples, little progress in conservation has been achieved. We suggest that the case of amphibian declines is relevant to conservation science in general, as the current paradigm for conservation is that management is planned after research is completed; research and management are not effectively (and not directly) connected. This disconnect illustrates the knowledge-action divide which has been noted recently as a serious deficiency in conservation. Accordingly, we use this introductory paper to the Special Issue (Amphibian conservation in the Anthropocene: Progress and challenges) to describe amphibians as a conservation dilemma, and to make the case for a different, more pragmatic, and more solutions-focused, view of conservation research.
Papers & Reports Drought-mediated extinction of an arid-land amphibian: insights from a spatially explicit dynamic occupancy model
Authors: E R Zylstra; D E Swann; Blake R Hossack; Erin Muths; R J Steidl
Outlet: Ecological Applications 29: e01859
Understanding how natural and anthropogenic processes affect population dynamics of species with patchy distributions is critical to predicting their responses to environmental changes. Despite considerable evidence that demographic rates and dispersal patterns vary temporally in response to an array of biotic and abiotic processes, few applications of metapopulation theory have sought to explore factors that explain spatio-temporal variation in extinction or colonization rates. To facilitate exploring these factors, we extended a spatially explicit model of metapopulation dynamics to create a framework that requires only binary presence-absence data, makes few assumptions about the dispersal process, and accounts for imperfect detection. We apply this framework to 22 years of biannual survey data for lowland leopard frogs, Lithobates yavapaiensis, an amphibian that inhabits arid stream systems in the southwestern U.S. and northern Mexico. Our results highlight the importance of accounting for factors that govern temporal variation in transition probabilities, as both extinction and colonization rates varied with hydrologic conditions. Specifically, local extinctions were more frequent during drought periods, particularly at sites without reliable surface water. Colonization rates increased when larval and dispersal periods were wetter than normal, which increased the probability that potential emigrants metamorphosed and reached neighboring sites. Extirpation of frogs from one watershed during a period of severe drought demonstrated the influence of site-level features, as frogs persisted only in areas where most sites held water consistently and where the amount of sediment deposited from high-elevation wildfires was low. Application of our model provided novel insights into how climate-related processes affected the distribution and population dynamics of an arid-land amphibian. The approach we describe has application to a wide array of species that inhabit patchy environments, can improve our understanding of factors that govern metapopulation dynamics, and can inform strategies for conservation of imperiled species.
Papers & Reports Identifying management-relevant research priorities for responding to disease-associated amphibian declines
Authors: Evan HC Grant; Michael J Adams; Robert N Fisher; Daniel A Grear; Brian J Halstead; Blake R Hossack; Erin Muths; Katherine LD Richgels; Robin E Russell; Kelly L Smalling; Hardin J Waddle; Susan C Walls; C Le White
Date: 2018-10 | Outlet: Global Ecology and Conservation
A research priority can be defined as a knowledge gap that, if resolved, identifies the optimal course of conservation action. We (a group of geographically distributed and multidisciplinary research scientists) used tools from nominal group theory and decision analysis to collaboratively identify and prioritize information needs within the context of disease-associated amphibian decline, in order to develop a strategy that would support US management agency needs. We developed iterated influence diagrams to create and assess a unified research strategy. We illustrated a transparent process for identifying specific knowledge gaps in amphibian disease ecology relevant to environmental management, and then constructed a research plan to address these uncertainties. The resulting priorities include a need to: (1) understand the drivers of the community-disease relationship, (2) determine the mechanisms by which exposure to contaminants influence disease outcomes, (3) identify elements of terrestrial and aquatic habitats that stabilize host-pathogen dynamics, (4) discuss how metapopulations may be managed to reduce the speed and intensity of disease outbreaks, and (5) define the relationship between habitat management and the environmental and host microbiomes. Along with identifying research priorities for disease management, we present the details of the process used to develop a consensus plan for addressing disease-related declines in amphibians on federally managed lands of the United States.
News & Stories Exploring the amphibian exposome in an agricultural landscape using telemetry and passive sampling
Authors: J E Swanson; Erin Muths; Clay L Pierce; S Dinsmore; M Vandever; Michelle L Hladik; Kelly L Smalling
September 11, 2018

USGS and Iowa State University scientists quantified Northern Leopard frog exposure to pesticides in aquatic and terrestrial habitats using a novel combination of radio telemetry and passive sampling techniques to better understand factors affecting frog health and survival in agricultural landscapes. The results of this newly published research can inform conservation strategies by providing information about when and where the frogs are most likely exposed to pesticides. This unique approach can be utilized in other land-use settings and with other amphibian species to better understand if contaminant exposure affects growth, development, fitness, and survival.

Full article is available here: https://www.nature.com/articles/s41598-018-28132-3

Papers & Reports Aquatic macroinvertebrate community response to wetland mitigation in the Greater Yellowstone Ecosystem
Authors: L K Swartz; Blake R Hossack; Erin Muths; R L Newell; W H Lowe
Date: 2019 | Outlet: Freshwater Biology 64: 942-953
Papers & Reports Estimating the probability of movement and partitioning seasonal survival in an amphibian metapopulation
Authors: Erin Muths; Larissa L Bailey; Brad A Lambert; S Schneider
Date: 2018-12 | Outlet: Ecosphere
Movement of individuals has been described as one of the best studied, but least understood concepts in ecology. The magnitude of movements, routes, and probability of movement, has significant application to conservation. Information about movement can inform efforts to model species persistence and is particularly applicable in situations where specific threats (e.g., disease) may depend on the movement of hosts and potential vectors. We estimated the probability of movement (breeding dispersal and permanent emigration) in a metapopulation of 16 breeding sites for boreal toads (Anaxyrus boreas boreas). We used a multi-state mark-recapture approach unique in its complexity (16 sites over 18 years) to address questions related to these movements and variation in resident survival. We found that individuals had a 1-2% probability of dispersing in a particular year and that approximately 10-20% of marked individuals were transient and observed in the metapopulation only once. Resident survival probabilities differed by season, with 71-90% survival from emergence from hibernation through early post-breeding and > 97% survival from mid/late active season through hibernation. Movement-related probabilities are needed to predict species range expansions and contractions, estimate population and metapopulation dynamics, understand host-pathogen and native-invasive species interactions, and to evaluate the relative effects of proposed management actions.
Papers & Reports CO-OCCURENCE OF CHIRICAHUA LEOPARD FROGS (LITHOBATES CHIRICAHUENSIS) WITH SUNFISH (LEPOMIS SPP.)
Authors: P E Howell; Brent H Sigafus; Blake R Hossack; Erin Muths
Outlet: Southwestern Naturalist 64:69-72
Invasive species are a major threat to the persistence of native species, particularly in systems where ephemeral aquatic habitats have been converted to or replaced by permanent water and predators such as fish have been introduced. Within the Altar Valley, Arizona, USA, the invasive American bullfrog (Lithobates [=Rana] catesbeianus) has been successfully eradicated to help recover Chiricahua leopard frogs (Lithobates chiricahuensis). However, other non-native predators including sunfish (Lepomis spp) are present in some permanent water bodies. During four consecutive years (2014-2017) we detected both the federally-threatened Chiricahua leopard frog and sunfish at one permanent water body in the Altar Valley. This suggests that despite the potential negative effect of predatory fish on amphibians, there may be conditions where the Chiricahua leopard frog may be able to co-occur with this non-native predator. A better understanding of rare situations of co-occurrence with non-native predators may contribute to our understanding of why co-occurrence happens in some but not all systems and whether conservation strategies can be developed in situations where complete eradication of non-native predators is infeasible.
Papers & Reports Twenty-nine years of population dynamics in a small-bodied montane amphibian
Authors: Erin Muths; R D Scherer; Staci M Amburgey; P. Stephen Corn
Outlet: Ecosphere
Identifying population declines before they reach crisis proportions is imperative given the current global decline in vertebrate fauna and the associated challenges and expense of recovery. Understanding life-histories and how the environment influences demography are critical aspects of this challenge, as is determining the biological relevance of covariates that are best supported by data. We used 29 years of data on chorus frogs at two sites to estimate demographic parameters, examine life-history, assess weather-related covariates, and determine the magnitude of process variation in target parameters. Average estimates of survival probabilities were https://0.51 (SE=0.04) and https://0.43 (SE=0.04), and average estimates of recruitment probabilities were https://0.64 (SE=0.07) and https://0.44 (SE=0.04). Process variation accounted for &#61619; 76% of the total temporal variation in both parameters at one pond and in survival probability alone at the other, suggesting that the covariates in our top models were explaining predominantly process rather than sampling variation. Estimates of population growth rates indicated a declining population at one pond (i.e., negative population growth rates in 15 of 18 years) and comparisons with historical estimates suggested declines in survival probability at the other. The amount of deviance explained was low, providing little support for the influence of covariates on target parameters, despite model selection support. Synthesis and applications: This analysis illustrates the value of disentangling components of variance when assessing demographic drivers and highlights the need for adequate demographic information in assigning conservation labels.
Papers & Reports Quantifying climate sensitivity and climate driven change in North American amphibian communities
Authors: David AW Miller; Evan HC Grant; Erin Muths; Staci M Amburgey; Michael J Adams; M B Joseph; Hardin J Waddle; P TJ Johnson; Maureen E Ryan; Benedikt R Schmidt; Daniel L Calhoun; Courtney L Davis; Robert N Fisher; David E Green; Blake R Hossack; Tracy A. Rittenhouse; Susan C Walls; Larissa L Bailey; Sam S Cruickshank; Gary M Fellers; Thomas A Gorman; C A Haas; Ward Hughson; David S Pilliod; S J Price; Andrew M Ray; Walt J Sadinski; D Saenz; William J Barichivich; Adrianne B Brand; Cheryl S Brehme; Rosi G Dagit; Katy S Delaney; Brad M Glorioso; Lee B Kats; Patrick M Kleeman; Christopher A Pearl; Carlton J Rochester; Seth PD Riley; Mark F Roth; Brent H Sigafus
Date: 2018-08 | Outlet: Nature Communications
We quantified the response of amphibian communities to climatic variability across the United States and Canada using more than 500,000 observations for 81 species across 86 study areas. We estimated the relationships between annual variation in climate variables and local colonization and persistence probabilities across more than 5000 surveyed sites. This allowed us to estimate sensitivity to change in five climate variables. Climate sensitivity differs greatly among eco-regions and depends on local climate, species life-history, and phylogeny. Local species richness was especially sensitive to changes in water availability during breeding and changes in winter temperature. These results allowed us to ask whether changing climate explains strong overall rates of decline in species richness observed in our data set. We found that recent change in the climate variables we measured does not explain why North American amphibian richness is rapidly declining, but does explain why some populations decline faster than others.&#8195;
Papers & Reports Exploring the amphibian exposome in an agricultural landscape using telemetry and passive sampling
Authors: J E Swanson; Erin Muths; Clay L Pierce; S Dinsmore; M Vandever; Michelle L Hladik; Kelly L Smalling
Date: 2018-07-03 | Outlet: Scientific Reports (2018) 8:10045
This is the first field study of its kind to combine radio telemetry, passive samplers, and pesticide accumulation in tissues to characterize the amphibian exposome as it relates to pesticides. Understanding how habitat drives exposure in individuals (i.e., their exposome), and how that relates to individual health is critical to managing species in an agricultural landscape where pesticide exposure is likely. We followed 72 northern leopard frogs (Lithobates pipiens) in two agricultural wetlands for insight into where and when individuals are at high risk of pesticide exposure. Novel passive sampling devices (PSDs) were deployed at sites where telemetered frogs were located, then moved to subsequent locations as frogs were radio-tracked. Pesticide concentration in PSDs varied by habitat and was greatest in agricultural fields where frogs were rarely found. Pesticide concentrations in frogs were greatest in spring when frogs were occupying wetlands compared to late summer when frogs occupied terrestrial habitats. Our results indicate that habitat and time of year influence exposure and accumulation of pesticides in amphibians. Our study illustrates the feasibility of quantifying the amphibian exposome to interpret the role of habitat use in pesticide accumulation in frogs to better manage amphibians in agricultural landscapes.
Papers & Reports Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning
Authors: Erin Muths; Thierry C Chambert; Benedikt R Schmidt; David AW Miller; Blake R Hossack; Pierre Joly; O Grolet; David E Green; David S Pilliod; Marc Cheylan; Robert N Fisher; Rebecca M McCaffery; Michael J Adams; Wendy J Palen; Jan W Arntzen; Justin Garwood; Gary M Fellers; Jean-Marc Thirion; Aurélien Besnard; Evan HC Grant
Date: 2017-12 | Outlet: Scientific Reports. DOI:10.1038/s41598-017-17105-7
The pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ?rules of thumb? for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.
News & Stories ARMI scientist involved in workshop in Hyderabad, India: Long term Wildlife Monitoring, Ecological and Statistical Considerations.
Authors: Erin Muths
March 07, 2018

The Amphibian Research and Monitoring Program has a reputation for taking wildlife monitoring to new levels using robust methods that allow synthetic data analyses across landscape scales. Because of this reputation, ARMI scientist Dr. Erin Muths was invited to lecture and mentor at a workshop in Hyderabad, India in November 2018. The workshop was titled Long term Wildlife Monitoring: Ecological and Statistical Considerations. The workshop was one component of an Indo-U.S. 21st Century Knowledge Initiative grant to Dr. Barry Noon at Colorado State University. The workshop was hosted by Dr. Karthikeyan Vasudevan at the Laboratory for the Conservation of Endangered Species (LaCONES), Centre for Cellular and Molecular Biology (CCMB). Attendees included early graduate students, post-doctoral researchers, and early career professionals. Interactions within and outside the classroom were completely positive.

The workshop focused on analytical methods, applications to particular datasets, field techniques, and examples of long-term monitoring programs (from organizational structure and methodology to data and products). The workshop material was rounded out with a variety of speakers including Dr. Arjun Gopalaswamy, Wildlife Conservation Research Unit, Oxford University, Dr. Kim McConkey, University of Nottingham-Malaysia, and Dr. Jagdish Krishnaswamy, Ashoka Trust for Research in Ecology and the Environment.

In addition to lecturing, Erin also spent time mentoring new graduate students and is, (along with Dr. David Miller, former ARMI post-doc, now at The Pennsylvania State University), a member of Gayathri Sreedharan's PhD committee (Jawaharlal Nehru Univesity, New Delhi / CCMB-LaCones). Ms Sreedharan's dissertation title is: Dynamics of enzootic/epizootic Batrachochytrium dendrobatidis infection in a community of stream amphibians from the Western Ghats.

This was a fantastic opportunity to help to build capacity in a country with stunning wildlife, but few resources for conservation. This effort illustrates ARMI's ability to address amphibian conservation needs, but also showcases the impact of USGS programs and leadership in the global community. Building partnerships and sharing information abroad deepens our understanding of the issues and increases our ability to effectively address partner science needs at home.

Papers & Reports Increasing connectivity between metapopulation ecology and landscape ecology
Authors: P E Howell; Erin Muths; Blake R Hossack; Brent H Sigafus; Richard Chandler
Date: 2018-02 | Outlet: Ecology 99(5), 2018, pp. 1119–1128
Abstract. Metapopulation ecology and landscape ecology aim to understand how spatial structure
influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process.