Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

866 record(s) found.

Papers & Reports Using life history traits to assess climate change vulnerability in understudied species
Authors: Ross K Hinderer; Blake R Hossack; Lisa A Eby
Outlet: Integrative Zoology
Climate change is a primary threat to biodiversity, but for many species, we still lack information required to assess their relative vulnerability to changes. Climate change vulnerability assessment (CCVA) is a widely used technique to rank relative vulnerability to climate change based on species characteristics, such as their distributions, habitat associations, environmental tolerances, and life-history traits. However, for species that we expect are vulnerable to climate change yet are understudied, like many amphibians, we often lack information required to construct CCVAs using existing methods. We used the CCVA framework to construct trait-based models based on life history theory, using empirical evidence of traits and distributions that reflected sensitivity of amphibians to environmental perturbation. We performed CCVAs for amphibians in 7 states in the north-central USA, focusing on 31 aquatic-breeding species listed as species of greatest conservation need by at last 1 state. Because detailed information on habitat requirements is unavailable for most amphibian species, we used species distributions and information on traits expected to influence vulnerability to a drying climate (e.g., clutch size and habitat breadth). We scored species vulnerability based on changes projected for mid-century (2040?2069) from 2 climate models representing “least-dry” and “most-dry” scenarios for the region. Species characteristics useful for discriminating vulnerability in our models included small range size, small clutch size, inflexible diel activity patterns, and smaller habitat breadth. When projected climate scenarios included a mix of drier and wetter conditions in the future, the exposure of a species to drying conditions was most important to relative rankings. When the scenario was universally drier, species characteristics were more important to relative rankings. Using information typically available even for understudied species and a range of climate projections, our results highlight the potential of using life history traits as indicators of relative climate vulnerability. The commonalities we identified provide a framework that can be used to assess other understudied species threatened by climate change.
Papers & Reports Assessing amphibian richness, rarity, threats, and conservation prospects for U.S. national park network [UPDATE TITLE]
Authors: Benjamin Lafrance; Andrew M Ray; Michael T Tercek; Robert N Fisher; Blake R Hossack
Date: 2024-11 | Outlet: npj Biodiversity
We assessed amphibian diversity, rarity, and threats across the U.S. National Park System, which covers 3.5% of the U.S. and 12% of federal lands. At least 230 of 354 (65%) amphibian species native to the U.S. occur in parks. Of the species documented in parks, 17% are considered at-risk globally and 20% are uncategorized, reflecting still-widespread data deficiencies. Parks in the Northwest and Northeast accumulated species most quickly (i.e., steepest species?area relationships). Non-native crayfishes and amphibians occur within 50 km of 60% and 25% of parks, respectively, illustrating the broad threat of non-native predators. Projected mid-century (2040–2069) changes in climatic water deficit, based on 25 climate futures, produced an expected 34% increase in dryness across all parks in the contiguous U.S. territory. Our analyses highlight the extent and regional differences in current and future threats and reveal gaps in species protection, but also reveal opportunities for targeted expansion and active management.
Papers & Reports Assessing predictions from optimal egg theory for an ectotherm relative to habitat duration
Authors: Jon M Davenport; Andrew Feltmann; LeeAnn Fishback; Blake R Hossack
Outlet: Wildlife Letters
Optimal egg size theory predicts females must balance investment per offspring to maximize fitness. This balance can change based on resources or habitat quality. In wetlands, common aspects of habitat quality are duration of water (hydroperiod) and predator presence. Ectotherms using habitats that dry or contain predators are likely under selection to optimize offspring production. We measured ovum and clutch sizes from wood frogs (Rana sylvatica) in 30 wetlands (2014?2019) in Subarctic Canada, where rapid changes in climate are accelerating wetland drying. We predicted wetlands with short hydroperiods would have larger ova, smaller clutch sizes, and larger ovum-to-clutch-sizes than wetlands with long hydroperiods or with fish predators. We found partial support for our predictions, with larger ova in habitats with short hydroperiods and no fish. We did not, however, find evidence of larger clutch sizes in wetlands with fish or a relationship with ovum-to-clutch size. Given the large environmental changes that are already occurring, our study is novel as one of the first to implicate these rapid changes as potential selective agents on reproductive output in an ectotherm.
Papers & Reports Informative priors can account for location uncertainty in stop-level analyses of the North American Breeding Bird Survey (BBS), allowing fine-scale ecological analyses
Authors: Ryan C Burner; Alan Kirschbaum; Jeffrey A. Hostetler; David J. Ziolkowski Jr; Nicholas M. Anich; Daniel Turek; Eli D. Striegel; Neal D. Niemuth
Date: 2024-09-14 | Outlet: Ornithological Applications
Ecologists can learn a lot about species by studying the precise locations in which they do (and do not) occur, but the location information associated with many species records is imprecise. A prominent example of this is the North American Breeding Bird Survey (BBS), in which volunteer observers have surveyed birds at points along consistent routes across the United States for over fifty-five years. As the BBS was designed for large-scale analyses, detailed location information for each bird count is not recorded. We estimate location uncertainty, and the resulting uncertainty in land cover covariates, for the BBS data and present a modeling method that accounts for this uncertainty in a way that opens new possibilities for fine-scale uses of this extensive dataset, unlocking its potential to advance the study of the relationships between birds and their immediate habitat. More broadly, our methods and modeling framework could be used in a variety of situations in which covariate or location uncertainty is a challenge.
Papers & Reports From eDNA to decisions using a multi-method approach to restoration planning in streams
Authors: Andrea J Adams; Colleen Kamoroff; Rob L Grasso; Brian J Halstead; Patrick M Kleeman; Katherine Powelson; Travis Seaborn; Claudia Mengelt; Caren S Goldberg; Ninette R Daniele
Date: 2024-06-21 | Outlet: Scientific Reports
Reintroduction efforts are increasingly used to mitigate biodiversity losses, but are frequently challenged by inadequate planning and uncertainty. High quality information about population status and threats can be used to prioritize reintroduction and restoration efforts and can transform ad hoc approaches into opportunities for improving conservation outcomes at a landscape scale. We conducted comprehensive environmental DNA (eDNA) and visual encounter surveys to determine the distribution of native and non?native aquatic species in two high?priority watersheds to address key uncertainties—such as the distribution of threats and the status of existing populations—inherent in restoration planning. We then used these occurrence data to develop a menu of potential conservation actions and a decision framework to benefit an endangered vertebrate (foothill yellow?legged frog, Rana boylii) in dynamic stream systems. Our framework combines the strengths of multiple methods, allowing managers and conservation scientists to incorporate conservation science and site?specific knowledge into the planning process to increase the likelihood of achieving conservation goals.
Papers & Reports Effects of harmful algal blooms on amphibians and reptiles are underreported and underrepresented
Authors: Brian J Tornabene; Kelly L Smalling; Blake R Hossack
Date: 2024-07-05 | Outlet: Environmental Toxicology & Chemistry
Harmful algal blooms (HABs) are a persistent and increasing problem globally, yet we still have a limited knowledge about how they affect many wildlife. Although semi-aquatic and aquatic amphibians and reptiles have experienced large declines and occupy environments where HABs are increasingly problematic, their vulnerability to HABs remains unclear. To inform monitoring, management, and future studies, we conducted a literature review and synthesized studies and reported mortality events describing effects of cyanotoxins from HABs on freshwater herpetofauna. Our review identified 37 unique studies and 71 endpoints (no-observed-effect and lowest-observed-effect concentrations) involving 11 amphibian and three reptile species worldwide. Responses varied widely among studies, species, and concentrations used in experiments. Concentrations causing lethal and sublethal effects in experiments were generally 1–100 µg/L, which is near the mean value of reported events but 70times less than the maximum cyanotoxin concentrations reported in the environment. However, one species of amphibian was tolerant to concentrations of 10,000 µg/L, demonstrating potentially immense differences in sensitivities. Most studies focused on microcystin-LR (MC-LR), which can increase systemic inflammation and harm the digestive system, reproductive organs, liver and kidneys, and development. The few studies on other cyanotoxins illustrated that effects resembled those of MC-LR at similar concentrations, but more research is needed to describe effects. All experimental studies were on larval and adult amphibians; there were no such studies on reptiles. Experimental work with reptiles and adult amphibians is needed to clarify thresholds of tolerance. Only nine mortality events were reported, mostly for reptiles. Given that amphibians likely decay faster than reptiles, which have tissues that resists decomposition, mass amphibian mortality events from HABs have likely been underreported. We propose seven major areas to focus future efforts to enhance our understanding of effects and monitoring of HABs on herpetofauna that fill important roles in freshwater and terrestrial environments.
Papers & Reports Decision analysis and adaptive management: strategies to overcome challenges of uncertainty and inaction.
Authors: Katherine M O'Donnell; Evan HC Grant
Outlet: Society for the Study of Amphibians and Reptiles Herpetological Conservation Series
A book chapter highlighting uncertainty and inaction in conservation, decision analysis steps and challenges and decision analysis for amphibians and reptiles
Papers & Reports Of toads and tolerance: Quantifying intraspecific variation in host resistance and tolerance to a lethal pathogen
Authors: Bennett Hardy; Erin Muths; W C Funk; Larissa L Bailey
Date: 2024-05-30 | Outlet: Journal of Animal Ecology
Due to the ubiquity of disease in natural systems, hosts have evolved strategies of disease resistance and tolerance to defend themselves from further harm once infected. Resistance strategies directly limit pathogen growth, typically leading to lower infection burdens in the host. A tolerance approach limits the fitness consequences caused by the pathogen but does not directly inhibit pathogen growth. Testing for intraspecific variation in wild host populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test for the relative importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden, and survival for eight weeks. We used a multi-state modeling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are highly tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also had higher probabilities of clearing infections and took an average of five days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that explain why population declines vary regionally across the species. We used a robust, multi-state framework to gain inference on typically hidden disease processes when testing for host tolerance or resistance and demonstrated that describing an entire species as ‘tolerant’ or ‘resistant’ is unwise without testing for intraspecific variation in host defenses.
Papers & Reports Matching decision support modeling frameworks to disease emergence stages
Authors: Evan HC Grant; Brittany A Mosher; Riley F Bernard; Alexander D Wright; Robin E Russell
Wildlife disease management decisions often require rapid responses to situations that are fraught with uncertainty. By recognizing that management is implemented to achieve specific objectives (whether defined explicitly or not), resource managers and science partners can identify an analysis technique and develop a plan to collect necessary data that will allow for the evaluation of management actions.
Papers & Reports Preparing for a Bsal invasion into North America has improved multi-sector readiness
Authors: Deanna H Olson; Evan HC Grant; Molly Bletz; Jonah Piovia-Scott; Jacob L Kerby; Michael J Adams; Florencia M Breitman; Michelle R Christman; María J Forzán; Matthew J Gray; Aubree J Hill; M S Koo; David Lesbarrères; Olga Milenkaya; Eria A Rebollar; Louise A Rollins-Smith; Megan Serr; Alex Shepak; Lenny Shirose; L Sprague; Jenifer Walke; Alexa R Warwick; Brittany A Mosher
Western palearctic salamander susceptibility to the skin disease caused by the amphibian chytrid fungus Batrachochytrium salamandrivorans (Bsal) was recognized in 2014, eliciting concerns for a potential novel wave of amphibian declines following the B. dendrobatidis (Bd) chytridiomycosis global pandemic. Although Bsal had not been detected in North America, initial experimental trials supported the heightened susceptibility of caudate amphibians to Bsal chytridiomycosis.
Papers & Reports Contrasting demographic responses under future climate at multiple life stages for two populations of a montane amphibian
Authors: Amanda M Kissel; Wendy J Palen; Michael J Adams; Justin Garwood
Date: 2024-01-03 | Outlet: Climate Change Ecology
For species with complex life histories, climate change can have contrasting effects for different life stages within locally adapted populations and may result in responses counter to general climate change predictions. Using data from two, 14-year demographic studies for a North American montane amphibian, Cascades frog (Rana cascadae), we quantified how aspects of current climate influenced annual survival of larvae and adult stages and modeled the stochastic population growth rate (?s) of each population for current (1980-2006) and future periods (2080s). Climate drivers of survival for the populations were similar for larvae (i.e. decreases in precipitation lead to pond drying and mortality), but diverged for terrestrial stages where decreases in winter length and summer precipitation had opposite effects. By the 2080s, we predict one population will be in sharp decline (?s = 0.90),while the other population will remain nearly stable (?s = 0.99) in the absence of other stressors, such as mortality due to disease. Our case study demonstrates a result counter to many climate envelope predictions in that stage-specific responses to local climate and hydrology result in a higher extinction risk for the more northern population.
Papers & Reports Hiding in plain sight: federally protected Ringed Map Turtles, Graptemys oculifera, found in a new river system
Authors: Brad M Glorioso; Will Selman; B R Kreiser; Aidan Ford
Date: 2024-04-30 | Outlet: Herpetological Conservation and Biology
Understanding the geographical range of a species is essential to successful conservation and management, but their ranges are not always fully known. Ringed Map Turtles, Graptemys oculifera, have been federally listed as a threatened species since 1986, and they have long been considered endemic to the Pearl River system of central Mississippi and southeastern Louisiana. By way of a 2021 citizen scientist observation, a new G. oculifera population was discovered in the Bogue Falaya, a river system that is west of and isolated from the Pearl River system. Genetic analyses of 23 individuals from the Bogue Falaya demonstrate their distinctiveness relative to sites in the Pearl River, suggesting it is a natural rather than introduced population. Therefore, G. oculifera should no longer be considered endemic to the Pearl River system, and this Bogue Falaya population of G. oculifera may warrant the designation of a distinct population segment under the Endangered Species Act. A thorough assessment of the distribution, abundance, and conservation threats to the Bogue Falaya population of G. oculifera is needed as well as surveys of surrounding systems. This discovery of a long federally protected species in the city limits of Covington, Louisiana, underscores the need for more surveys to fully understand species distributions and documents how citizen scientists can advance scientific knowledge.
Papers & Reports Terrestrial Movement Patterns of the Common Toad (Bufo bufo) in Central Spain Reveal Habitat of Conservation Importance
Authors: David R Daversa; Erin Muths; Jaime Bosch
Date: 2012 | Outlet: Journal of Herpetology, 46(4):658-664
Journal of Herpetology, 46(4):658-664
Papers & Reports Genetic Connectivity in the Arizona toad (Anaxyrus microscaphus): implications for conservation of a stream dwelling amphibian in the arid Southwestern U.S.
Authors: S J Oyler-McCance; Mason J Ryan; Brian K Sullivan; Jennifer A Fike; R Cornman; J T Giermakowski; Shawna J Zimmerman; Rachel L Harrow; S Hedwall; Blake R Hossack; I M Latella; Robert E Lovich; Sarah Siefken; Brent H Sigafus; Erin Muths
Outlet: Conservation Genetics
The Arizona Toad (Anaxyrus microscaphus) is restricted to riverine corridors and adjacent uplands in the arid southwestern United States. As with numerous amphibians worldwide, populations are declining and face various known or suspected threats, from disease to habitat modification resulting from climate change. The Arizona Toad has been petitioned to be listed under the U.S. Endangered Species Act and was considered “warranted but precluded” citing the need for additional information – particularly regarding natural history (e.g., connectivity and dispersal ability). The objectives of this study were to characterize population structure and genetic diversity across the species’ range. We used reduced-representation genomic sequencing to genotype 3,601 single nucleotide polymorphisms in 99 Arizona Toads from ten drainages across its range. Multiple analytical methods revealed two distinct genetic groups bisected by the Colorado River; one in the northwestern portion of the range in northwestern Arizona, southwestern Utah, and eastern Nevada and the other in the southeastern portion of the range in central and eastern Arizona and New Mexico. We also found subtle substructure within both groups, particularly in central Arizona where toad populations in lower elevations were less connected than those at higher elevations. The northern and southern parts of the Arizona Toad range are not well connected genetically and could be managed as separate units. Further, these data could be used to identify source populations for assisted migration or translocations to support small or potentially declining populations.
Papers & Reports Native amphibian toxin reduces invasive crayfish feeding with potential benefits to stream biodiversity
Authors: Gary Bucciarelli; Sierra J. Smith; Justin J. Choe; Phoebe D. Shin; Robert N Fisher; Lee B Kats
Date: 2023-09-13 | Outlet: BMC Ecology and Evolution 23, 51
Biodiversity is generally reduced when non-native species invade an ecosystem. Invasive crayfish, Procambarus clarkii, populate California freshwater streams, and in the Santa Monica Mountains (Los Angeles, USA), their introduction has led to trophic cascades due to omnivorous feeding behavior and a rapid rate of population growth. The native California newt, Taricha torosa, possesses a neurotoxin, tetrodotoxin (TTX), that affects freshwater animal behavior. Given P. clarkii has a limited evolutionary history with TTX, we hypothesized that TTX may affect crayfish feeding behaviors. To determine if TTX affects P. clarkii behavior, we measured cumulative movement and various feeding behaviors of P. clarkii exposed to (i) waterborne, ecologically realistic concentrations of TTX (~?3.0?×?10??8 moles/L), (ii) an anuran chemical cue to account for intraguild cues, or (iii) a T. torosa chemical cue with quantitated TTX in it (~?6.2?×?10??8 moles/L).

Results
We found that the presence of TTX in any form significantly reduced crayfish movement and decreased the amount of food consumed over time. Crayfish responses to the anuran treatment did not significantly differ from controls.

Conclusion
Our laboratory results show that naturally occurring neurotoxin from native California newts limits invasive crayfish foraging and feeding rates, which may play a role in preserving local stream ecosystems by limiting invasive crayfish behaviors that are detrimental to biodiversity.
Papers & Reports BioLake: A first assessment of lake temperature-derived bioclimatic predictors for aquatic invasive species
Authors: Ryan C Burner; Wesley M. Daniel; Peder S. Engelstad; Christopher J. Churchill; Richard E Erickson
Date: 2023-07-10 | Outlet: Ecosphere 14(7):e4616
Aquatic invasive species (AIS) present major ecological and economic challenges globally, endangering ecosystems and human livelihoods. Managers and policy makers thus need tools to predict invasion risk and prioritize species and areas of concern, and they often use native range climate matching to determine whether a species could persist in a new location. However, climate matching for AIS often relies on air temperature rather than water temperature due to a lack of global water temperature data layers, and predictive power of models is seldom evaluated. We developed 12 global lake (water) temperature-derived “BioLake” bioclimatic layers for distribution modeling of aquatic species and compared “climatch” climate matching predictions (from climatchR package) from BioLake with those based on BioClim temperature layers and with a null model. We did this for 73 established AIS in the United States, training the models on their ranges outside of the United States and Canada. Models using either set of climate layers outperformed the null expectation by a similar (but modest) amount on average, but some species were occasionally found in locations with low climatch scores. Mean US climatch scores were higher for most species when using air temperature. Including additional climate layers in models reduced mean climatch scores, indicating that commonly used climatch score thresholds are not absolute but can be context specific and may require calibration based upon climate data used. Although finer resolution global lake temperature data would likely improve predictions, our BioLake layers provide a starting point for aquatic species distribution modeling. Climate matching was most effective for some species that originated at low latitudes or had small ranges. Climatch scores remain useful but limited for predicting AIS risk, perhaps because current ranges seldom fully reflect climatic tolerances (fundamental niches). Managers could consider climate matching as one of a suite of tools that can be used in AIS prioritization.
Papers & Reports Critical review of the phytohemagglutinin assay for assessing amphibian immunity
Authors: Lauren Hawley; Kelly L Smalling; Scott Glaberman
Date: 2023-12-12 | Outlet: Conservation Physiology
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, from genetics and stress to pollution and climate change, can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the field and in the laboratory. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians in order to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians as a whole. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Papers & Reports Geographic Distribution. Storeria occipitomaculata
Authors: Aidan G Phillips; William C Carroll; Brad M Glorioso
Date: 2022-12-01 | Outlet: Herpetological Review
Geographic distribution parish record for this snake species
Papers & Reports Thirteen Years of Turtle Capture-Mark-Recapture in a Small Urban Pond Complex in Louisiana, USA
Authors: Brad M Glorioso; Hardin J Waddle; Doug P Armstrong
Date: 2023-09 | Outlet: Journal of Herpetology
Turtles are one of the most imperiled vertebrate groups in the world. With habitat destruction unabated in many places, urban and suburban greenspaces may serve as refugia for turtles, at least those species able to tolerate heavily altered landscapes. In south-central Louisiana, we have conducted a turtle capture-mark-recapture effort in two ponds in an urban greenspace for 13 years to understand species composition, survival, and individual growth rates. We had 574 total captures of 251 individuals of five species from 2009–2021, with Trachemys scripta elegans (Red-eared Sliders) and Sternotherus odoratus (Eastern Musk Turtles) being most common. Apparent annual survival for T. scripta (0.79) was similar to estimates reported in other studies in altered habitats, whereas apparent annual survival for S. odoratus (0.89) was slightly or much higher than other published studies. Growth rates of T. scripta were comparable to other studies and showed both sexes have similar rates of growth until maturity, which is earlier and at a smaller size in males. The two ponds showed marked differences in captures by size, with significantly more juvenile T. scripta captured in the pond with more vegetation, depth, and a softer bottom. Most T. scripta (78.5%) that were recaptured came from the same pond they were originally captured. The basic demographic data gained in this study can serve as a starting point for broader questions on urbanization effects and as a comparison to more natural populations.
Papers & Reports A Dataset of Amphibian Species in U.S. National Parks
Authors: Benjamin Lafrance; Andrew M Ray; Robert N Fisher; Evan HC Grant; S F Spear; J M Davenport; Brad M Glorioso; William J Barichivich; Brian J Halstead; Blake R Hossack
Date: 2024-01 | Outlet: Scientific Data 11: 21
National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.) National Park Service (NPS) requires understanding and maintaining accurate inventories of species on protected lands. We describe a new, national-scale synthesis of amphibian species occurrence in the NPS system. Many park units have a list of amphibian species observed within their borders compiled from various sources and available publicly through the NPSpecies platform. However, many of the observations in NPSpecies remain unverified and the lists are often outdated. We updated the amphibian dataset for each park unit by collating old and new park-level records and had them verified by regional experts. The new dataset contains occurrence records for 292 of the 424 NPS units and includes updated taxonomy, international and state conservation rankings, hyperlinks to a supporting reference for each record, specific notes, and related fields which can be used to better understand and manage amphibian biodiversity within a single park or group of parks.