Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

132 record(s) found.

Papers & Reports Of toads and tolerance: Quantifying intraspecific variation in host resistance and tolerance to a lethal pathogen
Authors: Bennett Hardy; Erin Muths; W C Funk; Larissa L Bailey
Date: 2024-05-30 | Outlet: Journal of Animal Ecology
Due to the ubiquity of disease in natural systems, hosts have evolved strategies of disease resistance and tolerance to defend themselves from further harm once infected. Resistance strategies directly limit pathogen growth, typically leading to lower infection burdens in the host. A tolerance approach limits the fitness consequences caused by the pathogen but does not directly inhibit pathogen growth. Testing for intraspecific variation in wild host populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test for the relative importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden, and survival for eight weeks. We used a multi-state modeling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are highly tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also had higher probabilities of clearing infections and took an average of five days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that explain why population declines vary regionally across the species. We used a robust, multi-state framework to gain inference on typically hidden disease processes when testing for host tolerance or resistance and demonstrated that describing an entire species as ‘tolerant’ or ‘resistant’ is unwise without testing for intraspecific variation in host defenses.
Papers & Reports Preparing for a Bsal invasion into North America has improved multi-sector readiness
Authors: Deanna H Olson; Evan HC Grant; Molly Bletz; Jonah Piovia-Scott; Jacob L Kerby; Michael J Adams; Florencia M Breitman; Michelle R Christman; María J Forzán; Matthew J Gray; Aubree J Hill; M S Koo; David Lesbarrères; Olga Milenkaya; Eria A Rebollar; Louise A Rollins-Smith; Megan Serr; Alex Shepak; Lenny Shirose; L Sprague; Jenifer Walke; Alexa R Warwick; Brittany A Mosher
Western palearctic salamander susceptibility to the skin disease caused by the amphibian chytrid fungus Batrachochytrium salamandrivorans (Bsal) was recognized in 2014, eliciting concerns for a potential novel wave of amphibian declines following the B. dendrobatidis (Bd) chytridiomycosis global pandemic. Although Bsal had not been detected in North America, initial experimental trials supported the heightened susceptibility of caudate amphibians to Bsal chytridiomycosis.
Papers & Reports Critical review of the phytohemagglutinin assay for assessing amphibian immunity
Authors: Lauren Hawley; Kelly L Smalling; Scott Glaberman
Date: 2023-12-12 | Outlet: Conservation Physiology
Infectious diseases are a major driver of the global amphibian decline. In addition, many factors, from genetics and stress to pollution and climate change, can influence the response to pathogens. Therefore, it is important to be able to evaluate amphibian immunity in the field and in the laboratory. The phytohemagglutinin (PHA) assay is an inexpensive and relatively non-invasive tool that has been used extensively to assess immunocompetence, especially in birds, and more recently in amphibians. However, there is substantial variation in experimental methodology among amphibian PHA studies in terms of species and life stages, PHA doses and injection sites, and use of experimental controls. Here, we compile and compare all known PHA studies in amphibians in order to identify knowledge gaps and develop best practices for future work. We found that research has only been conducted on a limited number of species, which may not reflect the diversity of amphibians as a whole. There is also a lack of validation studies in most species, so that doses and timing of PHA injection and subsequent swelling measurements may not effectively evaluate immunocompetence. Based on these and other findings, we put forward a set of recommendations to make future PHA studies more consistent and improve the ability to utilize this assay in wild populations, where immune surveillance is greatly needed.
Papers & Reports Successful eradication of invasive American bullfrogs leads to co-extirpation of emerging pathogens
Authors: Blake R Hossack; D Hall; C L Crawford; Caren S Goldberg; Erin Muths; Brent H Sigafus; Thierry C Chambert
Date: 2023 | Outlet: Conservation Letters
Interventions of host-pathogen dynamics provide strong tests of relationships, yet they are still rarely applied across multiple populations. After American Bullfrogs (Rana catesbeiana) invaded a wildlife refuge where federally threatened Chiricahua Leopard Frogs (R. chiricahuensis) were reintroduced 12 years prior, managers launched a landscape-scale eradication effort to help ensure continued recovery of the native species. We used a before-after-control-impact (BACI) design and environmental DNA sampling of 19 eradication sites and 18 control sites between fall 2016 and winter 2020–2021 to measure community-level responses to bullfrog eradication, including for 2 pathogens. Dynamic occupancy models revealed successful eradication from 94% of treatment sites. Native amphibians did not respond to bullfrog eradication, but the pathogens amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranaviruses were co-extirpated with bullfrogs. Our spatially replicated experimental approach provides strong evidence that management of invasive species can simultaneously reduce predation and disease risk for imperiled species.
Papers & Reports Inferring pathogen presence when sample misclassification and partial observation occur
Authors: Evan HC Grant; Riley O Mummah; Brittany A Mosher; Jonah Evans; Graziella V DiRenzo
Date: 2023-04-11 | Outlet: Methods in Ecology and Evolution
1. Surveillance programs are essential for detecting emerging pathogens and often rely on molecular methods to make inference about the presence of a target disease agent. However, molecular methods rarely detect target DNA perfectly. For example, molecular pathogen detection methods can result in misclassification (i.e., false positives and false negatives) or partial detection errors (i.e., detections with ‘ambiguous’, ‘uncertain’, or ‘equivocal’ results). Then, when data are to be analyzed, these?partial observations?are?either?discarded?or censored;?this, however, disregards information that could be used to make inference about the true state of the system. There is a critical need for more direction and guidance related to how many samples is enough to declare a unit of interest ‘pathogen-free’.
2. Here, we develop a Bayesian hierarchal framework that accommodates false negative, false positive, and uncertain detections to improve inference related to the occupancy of a pathogen. We apply our modeling framework to a case study of the fungal pathogen Pseudogymnoascus destructans (Pd) identified in Texas bats at the invasion front of white-nose syndrome. To improve future surveillance programs, we provide guidance on sample sizes required to be 95% certain a target organism is absent from a site.
3. We found that the presence of uncertain detections increased the variability of resulting posterior probability distributions of pathogen occurrence, and that our estimates of required sample size were very sensitive to prior information about pathogen occupancy, pathogen prevalence, and diagnostic test specificity. In the Pd case study, we found that the posterior probability of occupancy was very low in 2018, but occupancy probability approached 1 in 2020, reflecting increasing prior probabilities of occupancy and prevalence elicited from the site manager.
4. Our modeling framework provides the user a posterior probability distribution of pathogen occurrence, which allows for subjective interpretation by the decision-maker. To help readers apply and use the methods we developed, we provide an interactive?RShiny?app?that generates target species?occupancy estimation and sample size estimates to make these methods more accessible?to the scientific community (https://rmummah.shinyapps.io/ambigDetect_sampleSize).?This modeling framework and sample size guide may be useful for improving inferences from molecular surveillance data about emerging pathogens, non-native invasive species, and endangered species where misclassifications and ambiguous detections occur.
Papers & Reports Keeping the Heat On: Weighted Surveillance for Chytrid Fungus in Dixie Valley Toads
Authors: Matthew J Forrest; Brian J Halstead; Daniel A Grear; Patrick M Kleeman; Brian D Todd; Oliver J Miano; Kris Urquhart
Date: 2023-07-24 | Outlet: Journal of Wildlife Diseases
Introduced fungal pathogens have caused declines and extinctions of naive wildlife populations across vertebrate classes. Consequences of introduced pathogens to hosts with small ranges might be especially severe because of limited redundancy to rescue populations and lower abundance that may limit the resilience of populations to perturbations like disease introduction. As a complement to biosecurity measures to prevent the spread of pathogens, surveillance programs may enable early detection of pathogens, when management actions to limit the effects of pathogens on naïve hosts might be most bene?cial. We analyzed surveillance data for the endangered and narrowly endemic Dixie Valley toad (Anaxyrus [= Bufo] williamsi) from two time periods (2011–2014 and 2019–2021) to estimate the minimum detectable prevalence of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). We assessed if detection ef?ciency could be improved by using samples from both Dixie Valley toads and co-occurring introduced American bullfrogs (Lithobates catesbeianus) and literature-derived surveillance weights. We further evaluated a weighted surveillance design to increase the efficiency of surveillance efforts for Bd within the toad’s small (<6km2) range. We found that monitoring adult and larval American bullfrogs would probably detect Bd more ef?ciently than monitoring Dixie Valley toads alone. Given that no Bd was detected, minimum detectable prevalence of Bd was <3% in 2011–2014, and <5% (Dixie Valley toads only) and <10% (American bullfrogs only) in 2019–2021. Optimal management for Bd depends on the mechanisms underlying its apparent absence from the range of Dixie Valley toads, but a balanced surveillance scheme that includes sampling American bullfrogs to increase the likelihood of detecting Bd, and adult Dixie Valley toads to ensure broad spatial coverage where American bullfrogs do not occur, would probably result in ef?cient surveillance, which might permit timely management of Bd if it is detected.
Papers & Reports Compensatory recruitment unlikely in high elevation amphibian populations challenged with disease
Authors: Bennett Hardy; Erin Muths; Brad A Lambert; S C Schneider; W C Funk; Larissa L Bailey
Date: 2022-07-12 | Outlet: Journal of Applied Ecology
1. Understanding the causes of population variation in host response to disease, and the mechanisms of persistence, can serve as vital information for species conservation. One such mechanism of population persistence that has gained support is the demographic process of compensatory recruitment. Host populations may persist by increasing recruitment to compensate for reduced survival due to infection, thus limiting the negative effects of the disease on population trajectories. However, high elevation populations are inherently vulnerable to stochastic processes and may be limited in their ability to exhibit compensatory recruitment relative to lower elevation populations.
2. We use long-term mark-recapture data from five populations of boreal toads (Anaxyrus boreas boreas ), across an elevational gradient in Colorado, before and after pathogen arrival to assess whether populations can persist with Batrachochytrium dendrobatidis (Bd) via compensatory recruitment.
3. Prior to pathogen arrival, we found a life history tradeoff between survival and recruitment across elevations, where high elevation toads have high survival but lower recruitment and vice versa at lower elevations.
4. Pathogen arrival had a strong negative effect on apparent annual survival and recruitment leading to negative population growth rates and dramatically reduced host abundances. The data did not support the occurrence of compensatory recruitment.
5. Synthesis and applications. Our unique dataset indicates that demographic responses to pathogens may be environmentally (i.e., elevationally) context-dependent and highlights the value of long-term monitoring. We recommend that practitioners verify that potential persistence mechanisms occur across multiple populations and relevant environmental gradients to counter any assumptions of the mechanism existing species-wide. Quantifying variation in population responses to disease will aid in understanding the bounds of such persistence mechanisms and identify particularly vulnerable populations where mechanisms are non-existent.
Papers & Reports Captivity, reintroductions, and the rewilding of the amphibian microbiome
Authors: Timothy Korpita; Erin Muths; Mary K Watry; Valerie J McKenzie
Date: 2023 | Outlet: Microbial Ecology
Many studies have noted apparent differences in microbes associated with animals reared in captivity compared to their wild counterparts. Few studies have examined how microbes change when animals are reintroduced to the wild after being reared in captivity. As captive assurance populations and reintroduction programs increase, a better understanding of how microbial symbionts respond during animal translocations is critical. We examined changes in microbes of boreal toads (Anaxyrus boreas) after reintroduction to the wild following captive rearing. Boreal toads, a long-lived high elevation species, are endangered in Colorado primarily due to chytridiomycosis. Previous studies demonstrate that developmental life stage of boreal toads is an important factor in their microbiomes such that microbiomes change over the course of development. i) comparisons of the skin, mouth, and gut bacteria of boreal toads across four developmental life stages in captivity and the wild, ii) pre-metamorphic tadpole skin bacteria before and after reintroduction to the wild, and iii) adult skin bacteria during reintroduction to the wild. We used barcoded amplicon sequencing of the 16S small subunit of the rRNA gene on the Illumina MiSeq platform to characterize the bacterial communities. We demonstrated that differences occur across the skin gut and mouth microbes in captive versus wild boreal toads, and that the degree of difference depend on developmental stage. Skin bacteria from captive versus wild tadpoles were more similar relative to post-metamorphic life stages. When captive reared tadpoles were introduced to a wild site, their skin bacteria changed to mirror wild boreal toads within weeks. Similarly, the microbiome of reintroduced adult boreal toads also shifted to mirror wild-type microbes. Our results indicate that the microbial signature of boreal toads reared in captivity does not persist after release into natural habitat. The relationship between changing microbes and host health is not well understood for the majority of animal species but is an important part of wildlife conservation.
Papers & Reports Revisiting conservation units for the endangered mountain yellow-legged frog species complex (Rana muscosa, Rana sierrae) using multiple genomic methods
Authors: Allison Q Byrne; Andrew P Rothstein; Lydia L Smith; Hannah Kania; Roland A Knapp; Danial M Boiano; Cheryl J Briggs; Adam R Backlin; Robert N Fisher; Erica B Rosenblum
Date: 2023-09-29 | Outlet: Conservation Genetics https://doi.org/10.1007/s10592-023-01568-5
Insights from conservation genomics have dramatically improved recovery plans for numerous endangered species. However, most taxa have yet to benefit from the full application of genomic technologies. The mountain yellow-legged frog species complex, Rana muscosa and Rana sierrae, inhabits the Sierra Nevada mountains and Transverse/Peninsular Ranges of California and Nevada. Both species have declined precipitously throughout their historical distributions. Conservation management plans outline extensive ongoing recovery efforts but are still based on the genetic structure determined primarily using a single mitochondrial sequence. Our study used two different sequencing strategies – amplicon sequencing and exome capture – to refine our understanding of the population genetics of these imperiled amphibians. We used buccal swabs, museum tissue samples, and archived skin swabs to genotype frog populations across their range. Using the amplicon sequencing and exome capture datasets separately and combined, we document five major genetic clusters. Notably, we found evidence supporting previous species boundaries within Kings Canyon National Park with some exceptions at individual sites. Though we see evidence of genetic clustering, especially in the R. muscosa clade, we also found evidence of some admixture across cluster boundaries in the R. sierrae clade, suggesting a stepping-stone model of population structure. We also find that the southern R. muscosa cluster had large runs of homozygosity and the lowest overall heterozygosity of any of the clusters, consistent with previous reports of marked declines in this area. Overall, our results clarify management unit designations across the range of an endangered species and highlight the importance of sampling the entire range of a species, even when collecting genome-scale data.
Papers & Reports Empirical evidence for effects of invasive American Bullfrogs on occurrence of native amphibians and emerging pathogens
Authors: Blake R Hossack; Emily B Oja; Audrey Owens; D Hall; C L Crawford; Caren S Goldberg; S Hedwall; J A Lemos-Espinal; S MacVean; Magnus McCaffery; Erin Muths; A McCall; C Mosley; Brent H Sigafus; M J Sredl,; James C Rorabaugh
Date: 2023 | Outlet: Ecological Applications
Invasive species and emerging infectious diseases are two of the greatest
threats to biodiversity. American Bullfrogs (Rana [Lithobates] catesbeiana),
which have been introduced to many parts of the world, are often linked with
declines in native amphibians via predation and the spread of emerging pathogens
such as amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd])
and ranaviruses. Although many studies have investigated the potential role of
bullfrogs in the decline of native amphibians, analyses that account for shared
habitat affinities and imperfect detection have found limited support for
clear effects. Similarly, the role of bullfrogs in shaping the patch-level distribution
of pathogens is unclear. We used eDNA methods to sample 233 sites in the southwestern USA and Sonora, Mexico (2016–2018) to estimate how
the presence of bullfrogs affects the occurrence of four native amphibians,
Bd, and ranaviruses. Based on two-species, dominant-subordinate occupancy
models fitted in a Bayesian context, federally threatened Chiricahua Leopard
Frogs (Rana chiricahuensis) and Western Tiger Salamanders (Ambystoma
mavortium) were eight times (32% vs. 4%) and two times (36% vs. 18%), respectively,
less likely to occur at sites where bullfrogs occurred. Evidence for the
negative effects of bullfrogs on Lowland Leopard Frogs (Rana yavapaiensis)
and Northern Leopard Frogs (Rana pipiens) was less clear, possibly because of
smaller numbers of sites where these native species still occurred and because
bullfrogs often occur at lower densities in streams, the primary habitat for
Lowland Leopard Frogs. At the community level, Bd was most likely to occur
where bullfrogs co-occurred with native amphibians, which could increase the
risk to native species. Ranaviruses were estimated to occur at 33% of bullfrogonly
sites, 10% of sites where bullfrogs and native amphibians co-occurred,
and only 3% of sites where only native amphibians occurred. Of the 85 sites
where we did not detect any of the five target amphibian species, we also did
not detect Bd or ranaviruses; this suggests other hosts do not drive the distribution
of these pathogens in our study area. Our results provide landscape-scale
evidence that bullfrogs reduce the occurrence of native amphibians and
increase the occurrence of pathogens, information that can clarify risks and
aid the prioritization of conservation actions.
Papers & Reports Context-dependent variation in persistence of host populations in the face of disease
Authors: Bennett Hardy; Erin Muths; David N Koons
Date: 2021-12 | Outlet: Journal of Animal Ecology
In Focus: Valenzuela-Sanchez, A., Azat, C., Cunningham, A. A., Delgado, S., Bacigalupe, L. D., Beltrand, J., Serrano, J. M., Sentenac, H., Haddow, N., Toledo, V., Schmidt, B. R., & Cayuela, H. (2022). Interpopulation differences in male reproductive effort drive the population dynamics of a host exposed to an emerging fungal pathogen. Journal of Animal Ecology, XX, XXXX-XXXX. Understanding the nuances of population persistence in the face of a stressor can help predict extinction risk and guide conservation actions. However, the exact mechanisms driving population stability may not always be known. In this paper, Valenzuela-Sanchez et al. (2022) integrate long-term mark-recapture data, focal measurements of reproductive effort, a population matrix model, and inferences on life history variation to reveal differences in demographic response to disease in a susceptible frog species (Rhinoderma darwinii). Valenzuela-Sanchez et al. found that demographic compensation via compensatory recruitment explained the positive population growth rate in their high disease prevalence population whereas the low disease prevalence population did not compensate and thus had decreasing population growth. Compensatory recruitment was likely due to the high probability of males brooding, and the high number of brooded larvae in the high prevalence population compared to low prevalence and disease-free populations. Valenzuela-Sanchez et al. also document faster generation times in the high prevalence population, which may indicate a faster life history that may be contributing to the population’s ability to compensate for reduced survival. Lastly, the authors find a positive relationship between disease prevalence and the number of juveniles in a given population that suggest a possible prevalence threshold when increased reproductive effort may occur. Altogether, their study provides novel support for increased reproductive effort as the pathway for compensatory recruitment leading to increasing population growth despite strong negative effects of disease on adult survival. Their results also caution the overgeneralization of the effects of stressors (e.g., disease) on population dynamics, where context-dependent responses may differ among host populations of a given species.
Papers & Reports Site- and individual-level contamination affects infection prevalence of an emerging infectious disease of amphibians
Authors: Kelly L Smalling; Brittany A Mosher; L Iwanowicz; Keith A Loftin; Adam Boehlke; C R Muletz; N Cortes-Rodriguez; R Femmer; Evan HC Grant
Date: 2022-01-09 | Outlet: Environmental Toxicology and Chemistry
Emerging infectious disease outbreaks are one of multiple stressors responsible for amphibian declines globally. In the northeastern United States, ranaviral diseases are prevalent in amphibians and other ectothermic species, but there is still uncertainty as to whether their presence is leading to population level effects. Further, there is also uncertainty surrounding the potential interactions among disease infection prevalence in free-ranging animals and habitat degradation (co-occurrence of chemical stressors). The current study was designed to provide field-based estimates of the relationship between amphibian disease and chemical stressors. We visited 40 wetlands across three protected areas, estimated the prevalence of ranavirus among populations of larval wood frogs and spotted salamanders, and assessed chemical and biological stressors in wetland habitats and larval amphibians using a suite of selected bioassays, screening tools and chemical analyses. Estimated ranavirus occupancy varied among the three protected areas and ranged from https://0.27 to https://0.55 with considerable variation within protected area. Of the stressors evaluated, ranavirus prevalence was strongly and positively related to concentrations of metalloestrogens (metals with the potential to bind to estrogen receptors) and total metals in wetland sediments and weakly and negatively related to total pesticide concentrations in larval amphibians. These results can be used by land managers to refine habitat assessments to include such environmental factors with the potential to influence disease susceptibility.
Papers & Reports Low occurrence of ranavirus in the Prairie Pothole Region of Montana and North Dakota contrasts with prior surveys
Authors: Brian J Tornabene; E J Crespi; Bernardo Traversari; Kenzi M Stemp; Creagh W Breuner; Caren S Goldberg; Blake R Hossack
Date: 2021-12-16 | Outlet: Diseases of Aquatic Organisms
Ranaviruses are emerging pathogens that have caused mortality events in amphibians worldwide. Despite the negative effects of ranaviruses on amphibian populations, monitoring efforts are still lacking in many areas, including in the Prairie Pothole Region (PPR) of North America. Some PPR wetlands in Montana and North Dakota (USA) have been contaminated by energy-related saline wastewaters, and increased salinity has been linked to greater severity of ranavirus infections. In 2017, we tested tissues from larvae collected at 7 wetlands that ranged in salinity from 26 to 4103 mg Cl l-1. In 2019, we used environmental DNA (eDNA) to test for ranaviruses in 30 wetlands that ranged in salinity from 26 to 11754 mg Cl l-1. A previous study (2013-2014) found that ranavirus-infected amphibians were common across North Dakota, including in some wetlands near our study area. Overall, only 1 larva tested positive for ranavirus infection, and we did not detect ranavirus in any eDNA samples. There are several potential reasons why we found so little evidence of ranaviruses, including low larval sample sizes, mismatch between sampling and disease occurrence, larger pore size of our eDNA filters, temporal variation in outbreaks, low host abundance, or low occurrence or prevalence of ranaviruses in the wetlands we sampled. We suggest future monitoring efforts be conducted to better understand the occurrence and prevalence of ranaviruses within the PPR.
Papers & Reports The role of monitoring and research in the Greater Yellowstone Ecosystem in framing our understanding of the response of amphibians to disease
Authors: Erin Muths; Blake R Hossack
Date: 2022-02 | Outlet: Ecological Indicators
Pathogens such as ranaviruses and the novel amphibian chytrid fungus (Bd) are threats to amphibian biodiversity worldwide, including in landscapes that are protected from many anthropogenic stressors. We summarized data from studies in the Greater Yellowstone Ecosystem (GYE), one of the largest and most complete temperate-zone ecosystems on Earth, to assess the current state of knowledge about ranaviruses (2001–2020) and Bd (2000–2020) and provide insight into future threats and conservation strategies. Our comprehension of amphibian disease in the GYE is based on >20 years of monitoring, surveys, population studies, and opportunistic observations of mortality events. Diseases caused by these pathogens affect local species differently, depending on temperature, community structure, and location in the GYE. Bd has not been linked to die-offs but evidence for ongoing negative effects on survival contributes to foundational data on the effects of this pathogen in North America. There is less information on how ranaviruses affect amphibian vital rates, partly because ranaviruses are more difficult to study than Bd, but local mortality events attributed to, or consistent with, disease from ranaviruses are widespread in the GYE. The significance of disease in the long-term persistence of amphibians in the GYE is linked to anticipated changes in climate, especially drought. Other stressors, such as expected increases in visitor use and its associated impacts, are likely to exacerbate the effects of disease. Long-term information from this large, intact landscape helps to frame our understanding of the response of amphibians to disease and provides data that can contribute to management decisions, mitigation strategies, and forecasting efforts.
Papers & Reports Acute mortality in California salamander (Ambystoma californiense) and Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum) caused by Ribeiroia ondatrae (Class: Trematoda)
Authors: Saskia A Keller; Constance L Roderick; Christopher Caris; Daniel A Grear; R A Cole
Date: 2021-12-01 | Outlet: International Journal for Parasitology - Parasites and Wildlife
In early September 2019, a morbidity and mortality event affecting California tiger salamanders (Ambystoma californiense) and Santa-Cruz long-toed salamanders (Ambystoma macrodactylum croceum) in late stages of metamorphosis was reported in a National Wildlife Refuge in Santa Cruz County, California, US. During the postmortem disease investigation, severe integumentary metacercarial (Class: Trematoda) infection, associated with widespread skin lesions, was observed. Planorbid snails collected from the ponds of the refuge within seven days of the mortality event were infected with Ribeiroia ondatrae, a digenetic trematode that can cause malformation and death in some amphibians. We suggest that sustained seasonal high water levels due to active habitat management along with several years of increased rainfall led to increased bird visitation, increased over-wintering of snails, and prolonged salamander metamorphosis, resulting in a confluence of conditions to create a hyper-parasitized state. This case is most likely the result of a suspected change in the environment with cascading change in parasite-host dynamics giving rise to more intense disease presentations of a well-known and -studied parasite.
Papers & Reports Evaluation of regulatory action and surveillance as preventive risk-mitigation to an emerging global amphibian pathogen Batrachochytrium salamandrivorans (Bsal)
Authors: Daniel A Grear; Brittany A Mosher; Katherine LD Richgels; Evan HC Grant
Date: 2021-07-02 | Outlet: Conservation Biology
The emerging amphibian pathogen Batrachochytrium salamandrivorans (Bsal) is a severe threat to global urodelan (salamanders, newts, and related taxa) biodiversity. Bsal has not been detected, to date, in North America, but the risk is high because North America is one of the global hotspots for urodelan biodiversity. The North American and United States response to the discovery of Bsal in Europe was to take a risk-based approach to preventive management actions, including interim regulations on importation of captive salamanders and a large-scale surveillance effort. Risk-based approaches to decision-making can extend to adaptive management cycles by periodically incorporating new information that reduces uncertainty in an estimate of risk or to assess the effect of mitigation actions which reduce risk directly. Our objectives were to evaluate the effects of regulatory action on the introduction of Bsal to the U.S., quantify how a large-scale surveillance effort impacted consequence risk, and to combine other new information on species susceptibility to re-evaluate Bsal risk to the U.S. Import regulations effectively reduced import volume of targeted species, but new research on species susceptibility suggests the list of regulated species was incomplete regarding Bsal reservoir species. Not detecting Bsal in an intensive surveillance effort improved confidence that Bsal was not present, however, the overall risk-reduction impact was limited because of the expansive area of interest (conterminous United States) and limited time frame of sampling. Overall, the preventive actions in response to the Bsal threat did reduce Bsal risk in the U.S. and we present an updated risk assessment to provide information for adaptive decision-making.
Papers & Reports Resilience of native amphibian communities following catastrophic drought: evidence from a decade of regional-scale monitoring
Authors: W Moss; T McDevitt-Galles; Erin Muths; Steven Bobzien; J Purificato; P TJ Johnson
1. The increasing frequency and severity of drought has the potential to exacerbate existing global amphibian declines. However, interactions between drought and coincident stressors, coupled with high interannual variability in amphibian abundances, can mask the extent and underlying mechanisms of drought-induced declines. The application of dynamic occupancy modeling to longitudinal monitoring data estimates the effect of specific variables on population change, providing key insights into potential management strategies for drought resilience.
2. We synthesized a decade (2009 – 2019) of amphibian survey data from multiple monitoring programs across the California Bay Area and used occupancy modeling to estimate the influence of drought, invasive species, and land use on species’ persistence and colonization probabilities. The geographic and temporal scale of our dataset, consisting of 2574 surveys of seven species in 473 ponds, allowed us to quantify regional trends for an entire community of pond-breeding amphibians.
3. An extreme drought from 2012 – 2015 resulted in losses of breeding sites, with 51% of ponds drying in 2014 compared to <10% in non-drought years. Pond drying reduced persistence rates, and nearly every species exhibited reduced occupancy during the drought, with some species (American bullfrogs and California newts) declining by > 25%. Drought reduced occupancy via additional mechanisms beyond habitat loss; for example, lower spring precipitation (an important cue for breeding) was associated with reduced colonization.
4. During drought, native species’ persistence was higher in permanent relative to temporary ponds, even though these sites were also more likely to contain invasive fish and bullfrogs, which generally reduced native amphibian occupancy. Many of these permanent ponds dried during the worst year of drought, leading to extirpations of invasive species that appeared long-lasting. In contrast, native species rebounded quickly with returning rains and showed evidence of full recovery.
5. Synthesis and applications: Despite experiencing one of most severe droughts in a millennium, native species displayed high resilience. Due to longer recovery times by non-native relative to native species, drought presents a valuable management opportunity to remove invaders from key refugia, and we highlight the value of maintaining hydroperiod diversity to promote the persistence of multiple species.
Papers & Reports Enhanced between-site biosecurity to minimize herpetofaunal disease-causing pathogen transmission
Authors: Deanna H Olson; K H Haman; M J Gray; Reid N Harris; T Thompson; M Iredale; M Christman; J Williams; Michael J Adams; Jennifer R Ballard
Date: 2021 | Outlet: Herpetological Review
We describe biotic and abiotic factors that interact with field work to contribute to gradients in human-mediated herpetofaunal pathogen transmission (i.e., translocation) risk between sites. Using biotic and abiotic criteria, we identify site conditions that correspond to high risk for pathogen import [to a site] or high risk for pathogen export [from a site] for implementation of enhanced between-site biosecurity procedures to forestall human-mediated pathogen transmission. Our field-site criteria are based on seven contexts of the pathogen (occurrence, habitat), host(s) (occurrence, habitat, species richness), and geography (distance/topography, geopolitical land use) (Table 1). We do not provide an explicit decision tree because site contexts can be complex, and single contexts may be weighted heavily in some biosecurity decisions, warranting case-by-case decisions. A more conceptual decision tree (Fig. 1) about pathogen export or import can be more flexibly applied as site context vary. Our aim is to provide a rapid process to develop a qualitative narrative to support decisions for between-site herpetological disease biosecurity.
Papers & Reports Enigmatic Near-Extinction in a Boreal Toad Metapopulation in Northwestern Montana
Authors: Rebecca M McCaffery; Robin E Russell; Blake R Hossack
Outlet: Journal of Wildlife Management
North America’s protected lands harbor significant biodiversity and provide habitats where species threatened by a variety of stressors in other environments can thrive. Yet disease, climate change, and other threats are not limited by land management boundaries and can interact with conditions within protected landscapes to affect sensitive populations. We examined the population dynamics of a boreal toad (Anaxyrus boreas) metapopulation at a wildlife refuge in northwestern Montana over a 16-year period (2003-2018). We used robust design capture-recapture models to estimate male population size, recruitment, and apparent survival over time and in relation to the amphibian chytrid fungus, Batrachochytrium dendrobatidis. We estimated female population size in years with sufficient captures. Finally, we examined trends in male and female toad body size and condition. We found no evidence of an effect of disease or time on male toad survival but detected a strong negative trend in recruitment of new males to the population. Estimates of male and female abundance decreased dramatically over time. Body size of males and females was inversely related to estimated population size, consistent with reduced recruitment to replace adults, but body condition of adult males was only weakly associated with abundance. Together, these results describe the demography of a near-extinction event, and point to dramatic decreases in the recruitment of new individuals to the breeding population as the cause of this decline. We surmise that processes related to the restoration of historical hydrology within the refuge adversely affected amphibian breeding habitat, and that these changes interacted with disease, life history, and other factors to restrict the recruitment of new individuals to the breeding population over time. Our results point to challenges in understanding and predicting drivers of population change and highlight that current metrics for assessing population status can have limited predictive ability.
Papers & Reports Why disease ecology needs life-history theory: a host perspective
Authors: Andrés Valenzuela-Sánchez; M Wilbur; Stefano Canessa; Leonardo Bacigalupe; Erin Muths; Benedikt R Schmidt; A C Cunningham; A Ozgul; P TJ Johnson; Hugo Cayuela
Date: 2020-12 | Outlet: Ecology Letters
When facing an emerging infectious disease of conservation concern, we often have little
information on the nature of the host-parasite interaction to inform management decisions.
However, it is becoming increasingly clear that the life-history strategies of host species
can be predictive of individual- and population-level responses to infectious disease, even
without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue
that a deeper integration of life-history theory into disease ecology is timely and necessary
to improve our capacity to understand, predict, and mitigate the impact of endemic and
emerging infectious diseases in wild populations. Using wild vertebrates as an example, we
show that host life-history characteristics influence host responses to parasitism at different
levels of organization, from individuals to communities. We also highlight knowledge gaps
and future directions for the study of life-history and host responses to parasitism. We
conclude by illustrating how this theoretical insight can inform the monitoring and control
of infectious diseases in wildlife.