Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

291 record(s) found.

Papers & Reports Hot, wet, and rare: modeling the occupancy dynamics of the narrowly distributed Dixie Valley Toad
Authors: Jonathan P Rose; Patrick M Kleeman; Brian J Halstead
Date: 2022-08-29 | Outlet: Wildlife Research
Small population sizes and no possibility of metapopulation rescue put narrowly distributed endemic species under elevated risk of extinction from anthropogenic change. Desert spring wetlands host many endemic species that require aquatic habitat and are isolated by the surrounding xeric terrestrial habitat. Aims. We sought to model the occupancy dynamics of the Dixie Valley toad (Anaxyrus williamsi), a recently described species endemic to a small desert spring wetland complex in Nevada, USA. Methods. We divided the species’ range into 20 m × 20 m cells and surveyed for Dixie Valley toads at 60 cells during six primary periods from 2018 to 2021, following an occupancy study design. We analysed our survey data by using a multi-state dynamic occupancy model to estimate the probability of adult occurrence, colonisation, site survival, and larval occurrence and the relationship of each to environmental covariates. Key results. The detection probabilities of adult and larval toads were affected by survey length and time of day. Adult Dixie Valley toads were widely distributed, with detections in 75% of surveyed cells at some point during the 3-year study, whereas larvae were observed only in 20% of cells during the study. Dixie Valley toad larvae were more likely to occur in cells far from spring heads with a high coverage of surface water, low emergent vegetation cover, and water temperatures between 20°C and 28°C. Adult toads were more likely to occur in cells with a greater coverage of surface water and water depth >10 cm. Cells with more emergent vegetation cover and surface water were more likely to be colonised by adult toads. Conclusions. Our results showed that Dixie Valley toads are highly dependent on surface water in both spring and autumn. Adults and larvae require different environmental conditions, with larvae occurring farther from spring heads and in fewer cells. Implications. Disturbances to the hydrology of the desert spring wetlands in Dixie Valley could threaten the persistence of this narrowly distributed toad.
Papers & Reports Biofluorescence in tiger salamanders documented in Rocky Mountain National Park for the first time
Authors: Benjamin Lafrance; Andrew M Ray; Amanda M Kissel; Erin L Muths
Date: 2021-12 | Outlet: Park Science
Recent work has shown that many amphibians are biofluorescent. Biofluorescence describes an organism’s ability to absorb visible and ultraviolet light and re-emit it at a lower energy level (e.g., blue light re-emitted as green fluorescence). However, the function of fluorescence in amphibians is unclear. We observed paedomorphic western tiger salamanders at Lily Lake in Rocky Mountain National Park and obtained the first images recorded at this park of biofluorescence in these animals in response to blue light.
Papers & Reports Using physiological conditions to assess current and future habitat use of a Subarctic frog
Authors: Thomas P Hastings; Blake R Hossack; L Fishback; J M Davenport
Date: 2022 | Outlet: Integrative Zoology
Species with especially close dependence on the environment to meet physiological requirements, such as ectotherms, are highly susceptible to the impacts of climate change. Climate change is occurring rapidly in the Subarctic and Arctic, but there is limited knowledge on ectotherm physiology in these landscapes. We investigated how environmental conditions and habitat characteristics influence the physiological conditions and habitat use of wood frogs (Rana sylvatica, LeConte 1825) in a Subarctic landscape near Churchill, Manitoba (Canada). We used plaster models to estimate water loss rates and surface body temperatures among different habitat types and at specific locations used by radio-tracked frogs. Water loss (R^2 = 0.67) and surface temperature (R^2 = 0.80) of plaster models was similar to that of live frogs. Model-based water loss rates were greater in tundra habitat than in boreal forest and ecotone habitat. Habitat use of wood frogs was strongly tied with available surface moisture and decreased water loss rates that were observed with plaster models. Environmental conditions, such as wind speed and ground temperature, explained 58% and 91% of the variation in water balance and temperature of plaster models. Maintaining physiological conditions may be challenging for semi-aquatic ectotherms in environments vulnerable to future climate change. The ability to predict physiological conditions based on environmental conditions, as demonstrated in our study, can help understand how wildlife will respond to climatic changes.
Papers & Reports Optimizing Survey Design for Shasta Salamanders (Hydromantes spp.) to Estimate Occurrence in Little-Studied Portions of their Range
Authors: Brian J Halstead; Patrick M Kleeman; Graziella V DiRenzo; Jonathan P Rose
Date: 2022-08 | Outlet: Journal of Herpetology
Shasta salamanders (collectively, Hydromantes samweli, H. shastae, and H. wintu; hereafter Shasta salamander) are endemic to northern California in the general vicinity of Shasta Lake reservoir. Although generally associated with limestone, they have repeatedly been found in association with other habitats, calling into question the distribution of the species complex. Further limiting our knowledge of the species’ distributions is that they are only active or available for sampling on the soil surface for a small portion of the year, and detection probabilities for the species have never been estimated. We developed and implemented a survey protocol designed to estimate detection, availability, and occurrence probabilities from December 2019 through March 2020. We provide inference on Shasta salamander occurrence in portions of their range that have received little survey effort. We found that Shasta salamander occurrence was positively associated with the percent cover of embedded rock, and their availability (i.e., probability of being active on the soil surface during sampling) was positively related to relative humidity. The probability of occurrence of Shasta salamanders in our study area was low, and our winter-to-spring survey protocol was effective for estimating detection, availability, and occurrence probabilities in the study area and at specific sites. We suggest that conducting replicate surveys that quantify animal availability and detection probabilities will facilitate a better understanding of the habitat associations of Shasta salamanders and other rare species that might often be unavailable for detection
Papers & Reports Range-wide Persistence of the Endangered Arroyo Toad (Anaxyrus californicus) for 20+ Years Following a Prolonged Drought
Authors: C J Hitchcock; Elizabeth A Gallegos; Adam R Backlin; Russell Barabe; Peter H Bloom; Kimberly Boss; Cheryl S Brehme; Christopher W Brown; D R Clark; Elizabeth R Clark; Kevin Cooper; Julie Donnell; Edward L Ervin; Peter Famolaro; Kim M Guilliam; Jacquelyn J Hancock; Nicholas Hess; Steven Howard; Valerie Hubbartt; Patrick Lieske; Robert E Lovich; Tritia Matsuda; Katherin Meyer-Wilkins; Kamarul Muri; Barry Nerhus; J A Nordland; Brock Ortega; Robert H Packard; Ruben Ramirez; Sam C Stewart; S Sweet; M L Warburton; Jeffrey Wells; Ryan Winkleman; Kirsten Winter; Brian Zitt; Robert N Fisher
Date: 2022-03 | Outlet: Ecology and Evolution 12:e8796
Prolonged drought due to climate change has negatively impacted amphibians in southern California, U.S.A. Due to the severity and length of the current drought,
agencies and researchers had growing concern for the persistence of the arroyo toad (Anaxyrus californicus), an endangered endemic amphibian in this region. Range-wide surveys for this species had not been conducted for at least 20 years. In 2017–2020, we conducted collaborative surveys for arroyo toads at historical locations. We surveyed 88 of the 115 total sites having historical records and confirmed that the arroyo toad is currently extant in at least 61 of 88 sites and 20 of 25 historically occupied watersheds. We did not detect toads at almost a third of the surveyed sites but did detect toads at 18 of 19 specific sites delineated in the 1999 Recovery Plan to meet one of four downlisting criteria. Arroyo toads are estimated to live 7–8 years, making populations susceptible to prolonged drought. Drought is estimated to increase in frequency and duration with climate change. Mitigation strategies for drought impacts, invasive aquatic species, altered flow regimes, and other anthropogenic effects could be the most beneficial strategies for toad conservation and may also provide simultaneous benefits to several other native species that share the same habitat.
Papers & Reports Looking ahead, guided by the past: The role of U.S. national parks in amphibian research and conservation
Authors: Brian J Halstead; Andrew M Ray; Erin L Muths; Evan H Campbell Grant; Rob L Grasso; Michael J Adams; Katy S Delaney; Jane Carlson; Blake R Hossack
Date: 2022-03 | Outlet: Ecological Indicators
Protected areas like national parks are essential elements of conservation because they limit human influence on the landscape, which protects biodiversity and ecosystem function. The role of national parks in conservation, however, often goes far beyond limiting human influence. The U.S. National Park Service and its system of land units contribute substantively to conservation by providing protected lands where researchers can document trends in species distributions and abundances, examine characteristics important for generating these trends, and identify and implement conservation strategies to preserve biodiversity. We reviewed the contribution of U.S. national parks to amphibian research and conservation and highlight important challenges and findings in several key areas. First, U.S. national parks were instrumental in providing strong support that amphibian declines were real and unlikely to be simply a consequence of habitat loss. Second, research in U.S. national parks provided evidence against certain hypothesized causes of decline, like UV-B radiation, and evidence for others, such as introduced species and disease. However, describing declines and identifying causes contributes to conservation only if it leads to management; importantly, U.S. national parks have implemented many conservation strategies and evaluated their effectiveness in recovering robust amphibian populations. Among these, removal of invasive species, especially fishes; conservation translocations; and habitat creation and enhancement stand out as examples of successful conservation strategies with broad applicability. Successful management for amphibians is additionally complicated by competing mandates and stakeholder interests; for example, past emphasis on increasing visitor enjoyment by introducing fish to formerly fishless lakes had devastating consequences for many amphibians. Other potential conflicts with amphibian conservation include increasing development, increased risk of introductions of disease and exotic species with increased visitation, and road mortality. Decision science and leveraging partnerships have proven to be key components of effective conservation under conflicting mandates in national parks. As resource managers grapple with large-scale drivers that are outside local control, public-private partnerships and adaptive strategies are increasing in importance. U.S. national parks have played an important role in many aspects of identifying and ameliorating the amphibian decline crisis and will continue to be essential for the conservation of amphibians in the future.
Papers & Reports Late-season movement and habitat use by Oregon spotted frog (Rana pretiosa) in a large reservoir in Oregon, USA
Authors: Christopher A Pearl; Jennifer C Rowe; Brome McCreary; Michael J Adams
Date: 2022-03-04 | Outlet: Journal of Herpetology
Dam-created reservoirs are common landscape features that can provide habitat for amphibians, but their water level
fluctuations and nonnative predators can differ markedly from more natural habitats. We compared fall movement and habitat use by the
Oregon Spotted Frog (Rana pretiosa) in the reservoir pool with nearby river and pond habitats at Crane Prairie Reservoir in central
Oregon, USA. Movement rate of frogs in the river and ponds declined as water temperature cooled. Reservoir frogs moved further than
those in the river or ponds, and their movement rate increased as water temperature cooled. Most frog locations across all site types were
in aquatic herbaceous vegetation. We did not find shifts in habitat between early and late fall. Increased movement and the lack of
habitat shift in our reservoir frogs deeper into fall contrast with R. pretiosa in non-reservoir sites in this study and others. Consistent use
of vegetation by reservoir frogs throughout the fall could indicate cover use in presence of fish predators. Our study provides additional
detail on the range of habitats used by R. pretiosa in fall and suggests areas for further work to improve survival in constructed sites with
abundant fish predators.
Papers & Reports Testing whether adrenal steroids mediate phenotypic and physiologic effects of elevated salinity on larval tiger salamanders
Authors: B J Tornabene; E J Crespi; Creagh W Breuner; Blake R Hossack
Outlet: Integrative Zoology
Salinity (sodium chloride, NaCl) from anthropogenic sources is a persistent contaminant that negatively affects freshwater taxa. Amphibians can be susceptible to salinity, but some species are innately or adaptively tolerant. Physiological mechanisms mediating tolerance to salinity are still unclear, but changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO) are prime candidates. We exposed larval barred tiger salamanders (Ambystoma mavortium) to environmentally relevant NaCl treatments (<32–4000 mg·L?1) for 24 days to test effects on growth, survival, and waterborne CORT responses. Of those sampled, we also quantified waterborne ALDO from a subset. Using a glucocorticoid antagonist (RU486), we also experimentally suppressed CORT signaling of some larvae to determine if CORT mediates effects of salinity. There were no strong differences in survival among salinity treatments, but salinity reduced dry mass, snout–vent length, and body condition while increasing water content of larvae. High survival and sublethal effects demonstrated that salamanders were physiologically challenged but could tolerate the experimental concentrations. CORT signaling did not attenuate sublethal effects of salinity. Baseline and stress-induced (after an acute stressor, shaking) CORT were not influenced by salinity. ALDO was correlated with baseline CORT, suggesting it could be difficult to decouple the roles of CORT and ALDO. Future studies comparing ALDO and CORT responses of adaptively tolerant and previously unexposed populations could be beneficial to understand the roles of these hormones in tolerance to salinity. Nevertheless, our study enhances our understanding of the roles of corticosteroid hormones in mediating effects of a prominent anthropogenic stressor.
Papers & Reports Effects of salinity and RU486 on waterborne aldosterone and corticosterone of larval northern leopard frog larvae
Authors: B J Tornabene; Creagh W Breuner; Blake R Hossack; E J Crespi
Date: 2022-02-01 | Outlet: General and Comparative Endocrinology
testIncreased salinity is an emerging contaminant of concern for aquatic taxa. For amphibians exposed to salinity, there is scarce information about the physiological effects and changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO). Recent studies have quantified effects of salinity on CORT physiology of amphibians based on waterborne hormone collection methods, but much less is known about ALDO in iono- and osmoregulation of amphibians. We re-assayed waterborne hormone samples from a previous study to investigate effects of salinity (sodium chloride, NaCl) and a glucocorticoid receptor antagonist (RU486) on ALDO of northern leopard frog (Rana pipiens) larvae. We also investigated relationships between ALDO and CORT. Waterborne ALDO marginally decreased with increasing salinity and was, unexpectedly, positively correlated with baseline and stress-induced waterborne CORT. Importantly, ALDO increased when larvae were exposed to RU486, suggesting that RU486 may also suppress mineralocorticoid receptors or that negative feedback of ALDO is mediated through glucocorticoid receptors. Alternatively, CORT increases with RU486 treatment and might be a substrate for ALDO synthesis, which could account for increases in ALDO with RU486 treatment and the correlation between CORT and ALDO. ALDO was negatively correlated with percent water, such that larvae secreting more ALDO retained less water. Although sample sizes were limited and further validation and studies are warranted, our findings expand our understanding of adrenal steroid responses to salinization in amphibians and proposes new hypotheses regarding the co-regulation of ALDO and CORT.
Papers & Reports Hemidactylus parvimaculatus (Sri lankan Spotted House Gecko)
Authors: Christopher M Pellecchia; Brad M Glorioso; Robert W Mendyk; Charles A Collen; V Ch Montross; William McGighan; K Macedo; B R Maldonado; I N Morenc
Date: 2019-09-01 | Outlet: Herpetological Review
Describes three new parish records for this exotic species in Louisiana
Papers & Reports DIADOPHIS PUNCTATUS (Ring-necked Snake)
Authors: R P Kidder; Brad M Glorioso; Katie D Gray
Outlet: Herpetological Review
A new parish record for the Ring-necked Snake in Louisiana
Papers & Reports AMBYSTOMA OPACUM (Marbled Salamander). ATYPICAL NEST SITES.
Authors: Joshua M Hall; Brad M Glorioso; J Se Doody
Date: 2021-09-01 | Outlet: Herpetological Review
This note describes atypical locations where Marbled Salamanders, Ambystoma opacum, eggs have been laid off the substrate.
Papers & Reports Multi-scale patterns in occurrence of an ephemeral pool-breeding amphibian
Authors: Brian J Halstead; Jonathan P Rose; D R Clark; Patrick M Kleeman; Robert N Fisher
Date: 2022-03 | Outlet: Ecosphere
Species distributions are governed by processes occurring at multiple spatial scales. For species with complex life cycles, the needs of all life stages must be met within the dispersal limitations of the species. Multi-scale processes can be particularly important for these species, where small-scale patterns in specific habitat components can affect the distribution of one life stage, whereas large-scale patterns in land cover might better explain the distribution of other life stages. Using a conditional multi-scale model, we evaluated which aspects of the landscape and local environment are most strongly related to occupancy patterns of western spadefoots (Spea hammondii). In northern and central California, the proportion of grassland land cover within 2 km of a site was positively related to the occurrence of the northern clade of the western spadefoot. At the pond scale, we found that western spadefoots were more likely to breed in pools with lower pH. Our results indicate that protecting remaining grasslands for adult spadefoots and ensuring multiple pools with diverse characteristics and hydroperiods so at least some pools result in successful breeding will likely be necessary to conserve western spadefoots, especially with a changing climate. Considering the processes that affect species distributions at multiple life stages and spatial scales is an essential component of effective conservation.
Papers & Reports Increased growth rates of stream salamanders following forest harvesting
Authors: J C Guzy; Brian J Halstead; Kelly M Halloran; Jessica A Homyak; J D Willson
Date: 2021-10-24 | Outlet: Ecology and Evolution
Timber harvesting can influence headwater streams by altering stream productiv-ity, with cascading effects on the food web and predators within, including stream salamanders. Although studies have examined shifts in salamander occupancy or abundance following timber harvest, few examine sublethal effects such as changes in growth and demography. To examine the effect of upland harvesting on growth of the stream- associated Ouachita dusky salamander (Desmognathus brimleyorum), we used capture– mark– recapture over three years at three headwater streams embed-ded in intensely managed pine forests in west- central Arkansas. The pine stands sur-rounding two of the streams were harvested, with retention of a 14- and 21- m- wide forested stream buffer on each side of the stream, whereas the third stream was an unharvested control. At the two treatment sites, measurements of newly metamorphosed salamanders were on average 4.0 and 5.7 mm larger post- harvest compared with pre-harvest. We next assessed the influence of timber harvest on growth of post- metamorphic salamanders with a hierarchical von Bertalanffy growth model that included an effect of harvest on growth rate. Using measurements from 839 individual D. brimleyorum recaptured between 1 and 6 times (total captures, n = 1229), we found growth rates to be 40% higher post-harvest. Our study is among the first to examine responses of individual stream salamanders to timber harvesting, and we discuss mechanisms that may be responsible for observed shifts in growth. Our results suggest timber harvest that includes retention of a riparian buffer (i.e., stream-side management zone) may have short-term positive effects on juvenile stream salamander growth, potentially offsetting negative sublethal effects associated with harvest.
Papers & Reports Comparative Effects of Energy-Related Saline Wastewaters and NaCl on Hatching, Survival, and Fitness-Associated Traits of Two Amphibian Species
Authors: B J Tornabene; Creagh W Breuner; Blake R Hossack
Date: 2021 | Outlet: Environmental Toxicology and Chemistry
Increased salinity (sodium chloride; NaCl) is a prevalent and persistent
contaminant that negatively affects freshwater ecosystems. Although
most studies focus on effects of salinity from roads salts (primarily
NaCl), high-salinity wastewaters from energy extraction (wastewaters)
could be more harmful because they contain NaCl and other toxic
components. Many amphibians are sensitive to salinity and their eggs
are thought to be the most sensitive life history stage. However, there
are few investigations with salinity that include eggs and larvae
sequentially in long-term exposures. We investigated the relative effects
of wastewaters from a large energy reserve, the Williston Basin (USA),
and NaCl on northern leopard (Rana pipiens) and boreal chorus
(Pseudacris maculata) frogs. We exposed eggs to salinity and tracked
responses through larval stages (for 24 days). Wastewaters and NaCl
reduced hatching and larval survival, growth, development, and activity
while also increasing deformities. Chorus frog eggs and larvae were
more sensitive to salinity than leopard frogs suggesting species-specific
responses. Contrary to previous studies, eggs of both species were less
sensitive to salinity than larvae. Our ecologically relevant exposures
suggest that accumulating effects can reduce survival relative to starting
experiments with unexposed larvae. Alternatively, egg casings of some
species may provide some protection against salinity. Notably, effects of
wastewaters on amphibians were predominantly due to NaCl rather than
other components. Therefore, findings from studies with other sources of
increased salinity (e.g., road salts) could guide management of
wastewater-contaminated ecosystems, and vice versa, to mitigate
effects of salinization.
Papers & Reports Corticosterone Mediates a Growth-Survival Tradeoff for an Amphibian Exposed to Increased Salinity
Authors: B J Tornabene; Blake R Hossack; E J Crespi; Creagh W Breuner
Date: 2021-08-09 | Outlet: Journal of Experimental Zoology Part A
Life-history tradeoffs are common across taxa, but growth-survival tradeoffs—which usually enhance survival at a cost to growth—are less frequently investigated. Increased salinity (NaCl) is a prevalent anthropogenic disturbance that may cause a growth-survival tradeoff for amphibians. Although physiological mechanisms mediating tradeoffs are seldom investigated, hormones are prime candidates. Corticosterone (CORT) is a steroid hormone that independently influences survival and growth and may provide mechanistic insight into growth-survival tradeoffs. We used 24-d trials to test effects of salinity (0 – 4000 mg/L Cl-) on growth, development, survival, CORT responses, and tradeoffs among traits of larval Northern Leopard Frogs (Rana pipiens). We also tested experimentally suppressed CORT signaling to determine whether CORT signaling mediates effects of salinity and life history tradeoffs . Increased salinity reduced survival, growth, and development. Suppressing CORT signaling in conjunction with salinity reduced survival further, but also attenuated negative effects of salinity on growth and development. CORT of control larvae increased or was stable with growth and development, but decreased with growth and development for those exposed to salinity. Therefore, salinity dysregulated CORT physiology. Across all treatments, larvae that survived had higher CORT than larvae that died. By manipulating CORT signaling, we provide strong evidence that CORT physiology mediates the outcome of a growth-survival tradeoff. To our knowledge, this is the first study to concomitantly measure tradeoffs between growth and survival and experimentally link these changes to CORT physiology. Identifying mechanistic links between stressors and fitness-related outcomes is critical to enhance our understanding of tradeoffs.
Papers & Reports Staggered-entry analysis of breeding and occupancy dynamics of Arizona Toads from historically occupied habitats of New Mexico, USA
Authors: M J Forzley; Mason J Ryan; I M Latella; J T Giermakowski; Erin L Muths; Brent H Sigafus; Blake R Hossack
Outlet: Copeia
For species with variable phenology, it is often challenging to produce reliable estimates of population dynamics or changes in occupancy. The Arizona Toad (Anaxyrus microscaphus) is a southwestern USA endemic that has been petitioned for legal protection, but status assessments are limited by a lack of information on population trends. Also, timing and consistency of Arizona Toad breeding varies greatly, making it difficult to predict optimal survey times or effort required for detection. To help fill these information gaps, we conducted breeding season call surveys during 2013–2016 and 2019 at 86 historically occupied sites and 59 control sites across the species’ range in New Mexico. We estimated variation in mean dates of arrival and departure from breeding sites, changes in occupancy, and site-level extinction since 1959 with recently developed multi-season staggered-entry models, which relax the within-season closure assumption common to most occupancy models. Optimal timing of surveys in our study areas was approximately March 5 - March 30. Averaged across years, estimated probability of occupancy was https://0.58 (SE = 0.09) for historical sites and https://0.19 (SE = 0.08) for control sites. Occupancy increased from 2013 through 2019. Notably, even though observer error was trivial, annual detection probabilities varied from https://0.23 to https://0.75 and declined during the study; this means naïve occupancy values would have been misleading, indicating apparent declines in toad occupancy. Occupancy was lowest during the first year of the study, possibly due to changes in stream flows and conditions in many waterbodies following extended drought and recent wildfires. Although within-season closure was violated by variable calling phenology, simple multi-season models provided nearly identical estimates as staggered-entry models. Surprisingly, extinction probability was unrelated to the number of years since the first or last record at historically occupied sites. Collectively, our results suggest a lack of large, recent declines in occupancy by Arizona Toads in New Mexico, but we still lack population information from most of the species’ range.
Papers & Reports Thermal conditions predict intraspecific variation in senescence rate in frogs and toads
Authors: Hugo Cayuela; Rebecca M McCaffery; Thierry Frétey; Benedikt R Schmidt; Kurt Grossenbacher; Omar Lenzi; Blake R Hossack; Brad A Lambert; Johan Elmberg; J Merilä; J Gippet; David S Pilliod; Erin L Muths
Date: 2021-11 | Outlet: PNAS
Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term, capture-recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris, Rana temporaria) and Bufonidae (Anaxyrus boreas, Bufo bufo) families, which diverged more than 100 mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas. In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increase predicted by IPCC scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.
Papers & Reports Sex-related differences in aging rate are associated with sex chromosome system in amphibians
Authors: Hugo Cayuela; J Lemaître; Jean-Paul Lena; Victor Ronget; Iñigo Martinez-Solano; Erin L Muths; David S Pilliod; Jean-Francois Lemaitre
Date: 2021-12 | Outlet: Evolution
Sex-related differences in mortality are widespread in the living world. Although sexual selection and environmental conditions might drive sex-specific variation in lifespan, recent findings suggest that sex chromosome systems are also involved. However, the influence of sex chromosome systems on aging rate (i.e., the rate of increase of mortality with age), a mortality metric that only partially correlates with lifespan, has not been investigated so far, due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (with heterogametic females) sex-determination systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly switched over the past 200 million years we examine whether sex heterogamety can predict sex-differences in aging rates. We show that variation in aging rate only accounts for a moderate proportion of the variation in lifespan, similarly to what has been reported in mammals. Moreover, our results demonstrate that the system of genetic sex-determination has a critical impact on aging rate in clades that include closely related taxa with XY vs. ZW systems. In both systems the heterogametic sex experiences a higher aging rate compared to the homogametic sex. This new finding suggests that exposed recessive deleterious mutations on the X/Z chromosome (the “unguarded X/Z effect”) or repeat-rich Y/W chromosome (the “toxic Y/W effect”) could accelerate aging in the heterogametic sex.
Papers & Reports Demography of the Oregon spotted frog along a hydrologically modified river
Authors: Jennifer C Rowe; Adam Duarte; Christopher A Pearl; Brome McCreary; P K Haggerty; John W Jones; Michael J Adams
Date: 2021-06-21 | Outlet: Ecosphere
Altered flow regimes can contribute to dissociation between life history strategies and environmental conditions, leading to reduced persistence reported for many wildlife populations inhabiting regulated rivers. The Oregon spotted frog (Rana pretiosa) is a threatened species occurring in floodplains, ponds, and wetlands in the Pacific Northwest with a core range in Oregon, USA. All life stages of R. pretiosa are reliant on aquatic habitats, and inundation patterns across the phenological timeline can have implications for population success. We conducted capture-mark-recapture (CMR) sampling of adult and subadult R. pretiosa at three sites along the Deschutes River downstream from two dams that regulate flows. We related the seasonal extent of inundated habitat at each site to monthly survival probabilities using a robust design CMR model. We also developed matrix projection models to simulate population dynamics into the future under current river flows. Monthly survival was strongly associated with the extent and variability of inundated habitat, suggesting some within-season fluctuations at higher water levels could be beneficial. Seasonal survival was lowest in the winter for all three sites, owing to limited water availability and the greater number of months within this season relative to other seasons. Population growth for the two river-connected sites was most strongly linked to adult survival, whereas population growth at the river-disconnected site was most strongly tied to survival in juvenile stages. This research identifies population effects of seasonally limited water and highlights conservation potential of enhancing survival of particularly influential life stages.