Search ARMI Database

Search term(s)

Filter search results with:


To view all contents, leave all fields blank and click "Search" button.

Contribution Number


Search Results

83 record(s) found.

Papers & Reports Hot, wet, and rare: modeling the occupancy dynamics of the narrowly distributed Dixie Valley Toad
Authors: Jonathan P Rose; Patrick M Kleeman; Brian J Halstead
Date: 2022-08-29 | Outlet: Wildlife Research
Small population sizes and no possibility of metapopulation rescue put narrowly distributed endemic species under elevated risk of extinction from anthropogenic change. Desert spring wetlands host many endemic species that require aquatic habitat and are isolated by the surrounding xeric terrestrial habitat. Aims. We sought to model the occupancy dynamics of the Dixie Valley toad (Anaxyrus williamsi), a recently described species endemic to a small desert spring wetland complex in Nevada, USA. Methods. We divided the species’ range into 20 m × 20 m cells and surveyed for Dixie Valley toads at 60 cells during six primary periods from 2018 to 2021, following an occupancy study design. We analysed our survey data by using a multi-state dynamic occupancy model to estimate the probability of adult occurrence, colonisation, site survival, and larval occurrence and the relationship of each to environmental covariates. Key results. The detection probabilities of adult and larval toads were affected by survey length and time of day. Adult Dixie Valley toads were widely distributed, with detections in 75% of surveyed cells at some point during the 3-year study, whereas larvae were observed only in 20% of cells during the study. Dixie Valley toad larvae were more likely to occur in cells far from spring heads with a high coverage of surface water, low emergent vegetation cover, and water temperatures between 20°C and 28°C. Adult toads were more likely to occur in cells with a greater coverage of surface water and water depth >10 cm. Cells with more emergent vegetation cover and surface water were more likely to be colonised by adult toads. Conclusions. Our results showed that Dixie Valley toads are highly dependent on surface water in both spring and autumn. Adults and larvae require different environmental conditions, with larvae occurring farther from spring heads and in fewer cells. Implications. Disturbances to the hydrology of the desert spring wetlands in Dixie Valley could threaten the persistence of this narrowly distributed toad.
Papers & Reports Looking ahead, guided by the past: The role of U.S. national parks in amphibian research and conservation
Authors: Brian J Halstead; Andrew M Ray; Erin L Muths; Evan HC Grant; Rob L Grasso; Michael J Adams; Katy S Delaney; Jane Carlson; Blake R Hossack
Date: 2022-03 | Outlet: Ecological Indicators
Protected areas like national parks are essential elements of conservation because they limit human influence on the landscape, which protects biodiversity and ecosystem function. The role of national parks in conservation, however, often goes far beyond limiting human influence. The U.S. National Park Service and its system of land units contribute substantively to conservation by providing protected lands where researchers can document trends in species distributions and abundances, examine characteristics important for generating these trends, and identify and implement conservation strategies to preserve biodiversity. We reviewed the contribution of U.S. national parks to amphibian research and conservation and highlight important challenges and findings in several key areas. First, U.S. national parks were instrumental in providing strong support that amphibian declines were real and unlikely to be simply a consequence of habitat loss. Second, research in U.S. national parks provided evidence against certain hypothesized causes of decline, like UV-B radiation, and evidence for others, such as introduced species and disease. However, describing declines and identifying causes contributes to conservation only if it leads to management; importantly, U.S. national parks have implemented many conservation strategies and evaluated their effectiveness in recovering robust amphibian populations. Among these, removal of invasive species, especially fishes; conservation translocations; and habitat creation and enhancement stand out as examples of successful conservation strategies with broad applicability. Successful management for amphibians is additionally complicated by competing mandates and stakeholder interests; for example, past emphasis on increasing visitor enjoyment by introducing fish to formerly fishless lakes had devastating consequences for many amphibians. Other potential conflicts with amphibian conservation include increasing development, increased risk of introductions of disease and exotic species with increased visitation, and road mortality. Decision science and leveraging partnerships have proven to be key components of effective conservation under conflicting mandates in national parks. As resource managers grapple with large-scale drivers that are outside local control, public-private partnerships and adaptive strategies are increasing in importance. U.S. national parks have played an important role in many aspects of identifying and ameliorating the amphibian decline crisis and will continue to be essential for the conservation of amphibians in the future.
Papers & Reports Late-season movement and habitat use by Oregon spotted frog (Rana pretiosa) in a large reservoir in Oregon, USA
Authors: Christopher A Pearl; Jennifer C Rowe; Brome McCreary; Michael J Adams
Date: 2022-03-04 | Outlet: Journal of Herpetology
Dam-created reservoirs are common landscape features that can provide habitat for amphibians, but their water level fluctuations and nonnative predators can differ markedly from more natural habitats. We compared fall movement and habitat use by the Oregon Spotted Frog (Rana pretiosa) in the reservoir pool with nearby river and pond habitats at Crane Prairie Reservoir in central Oregon, USA. Movement rate of frogs in the river and ponds declined as water temperature cooled. Reservoir frogs moved further than those in the river or ponds, and their movement rate increased as water temperature cooled. Most frog locations across all site types were in aquatic herbaceous vegetation. We did not find shifts in habitat between early and late fall. Increased movement and the lack of habitat shift in our reservoir frogs deeper into fall contrast with R. pretiosa in non-reservoir sites in this study and others. Consistent use of vegetation by reservoir frogs throughout the fall could indicate cover use in presence of fish predators. Our study provides additional detail on the range of habitats used by R. pretiosa in fall and suggests areas for further work to improve survival in constructed sites with abundant fish predators.
Papers & Reports Testing whether adrenal steroids mediate phenotypic and physiologic effects of elevated salinity on larval tiger salamanders
Authors: B J Tornabene; E J Crespi; Creagh W Breuner; Blake R Hossack
Outlet: Integrative Zoology
Salinity (sodium chloride, NaCl) from anthropogenic sources is a persistent contaminant that negatively affects freshwater taxa. Amphibians can be susceptible to salinity, but some species are innately or adaptively tolerant. Physiological mechanisms mediating tolerance to salinity are still unclear, but changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO) are prime candidates. We exposed larval barred tiger salamanders (Ambystoma mavortium) to environmentally relevant NaCl treatments (<32–4000 mg·L?1) for 24 days to test effects on growth, survival, and waterborne CORT responses. Of those sampled, we also quantified waterborne ALDO from a subset. Using a glucocorticoid antagonist (RU486), we also experimentally suppressed CORT signaling of some larvae to determine if CORT mediates effects of salinity. There were no strong differences in survival among salinity treatments, but salinity reduced dry mass, snout–vent length, and body condition while increasing water content of larvae. High survival and sublethal effects demonstrated that salamanders were physiologically challenged but could tolerate the experimental concentrations. CORT signaling did not attenuate sublethal effects of salinity. Baseline and stress-induced (after an acute stressor, shaking) CORT were not influenced by salinity. ALDO was correlated with baseline CORT, suggesting it could be difficult to decouple the roles of CORT and ALDO. Future studies comparing ALDO and CORT responses of adaptively tolerant and previously unexposed populations could be beneficial to understand the roles of these hormones in tolerance to salinity. Nevertheless, our study enhances our understanding of the roles of corticosteroid hormones in mediating effects of a prominent anthropogenic stressor.
Papers & Reports Effects of salinity and RU486 on waterborne aldosterone and corticosterone of larval northern leopard frog larvae
Authors: B J Tornabene; Creagh W Breuner; Blake R Hossack; E J Crespi
Date: 2022-02-01 | Outlet: General and Comparative Endocrinology
testIncreased salinity is an emerging contaminant of concern for aquatic taxa. For amphibians exposed to salinity, there is scarce information about the physiological effects and changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO). Recent studies have quantified effects of salinity on CORT physiology of amphibians based on waterborne hormone collection methods, but much less is known about ALDO in iono- and osmoregulation of amphibians. We re-assayed waterborne hormone samples from a previous study to investigate effects of salinity (sodium chloride, NaCl) and a glucocorticoid receptor antagonist (RU486) on ALDO of northern leopard frog (Rana pipiens) larvae. We also investigated relationships between ALDO and CORT. Waterborne ALDO marginally decreased with increasing salinity and was, unexpectedly, positively correlated with baseline and stress-induced waterborne CORT. Importantly, ALDO increased when larvae were exposed to RU486, suggesting that RU486 may also suppress mineralocorticoid receptors or that negative feedback of ALDO is mediated through glucocorticoid receptors. Alternatively, CORT increases with RU486 treatment and might be a substrate for ALDO synthesis, which could account for increases in ALDO with RU486 treatment and the correlation between CORT and ALDO. ALDO was negatively correlated with percent water, such that larvae secreting more ALDO retained less water. Although sample sizes were limited and further validation and studies are warranted, our findings expand our understanding of adrenal steroid responses to salinization in amphibians and proposes new hypotheses regarding the co-regulation of ALDO and CORT.
Papers & Reports Corticosterone Mediates a Growth-Survival Tradeoff for an Amphibian Exposed to Increased Salinity
Authors: B J Tornabene; Blake R Hossack; E J Crespi; Creagh W Breuner
Date: 2021-08-09 | Outlet: Journal of Experimental Zoology Part A
Life-history tradeoffs are common across taxa, but growth-survival tradeoffs—which usually enhance survival at a cost to growth—are less frequently investigated. Increased salinity (NaCl) is a prevalent anthropogenic disturbance that may cause a growth-survival tradeoff for amphibians. Although physiological mechanisms mediating tradeoffs are seldom investigated, hormones are prime candidates. Corticosterone (CORT) is a steroid hormone that independently influences survival and growth and may provide mechanistic insight into growth-survival tradeoffs. We used 24-d trials to test effects of salinity (0 – 4000 mg/L Cl-) on growth, development, survival, CORT responses, and tradeoffs among traits of larval Northern Leopard Frogs (Rana pipiens). We also tested experimentally suppressed CORT signaling to determine whether CORT signaling mediates effects of salinity and life history tradeoffs . Increased salinity reduced survival, growth, and development. Suppressing CORT signaling in conjunction with salinity reduced survival further, but also attenuated negative effects of salinity on growth and development. CORT of control larvae increased or was stable with growth and development, but decreased with growth and development for those exposed to salinity. Therefore, salinity dysregulated CORT physiology. Across all treatments, larvae that survived had higher CORT than larvae that died. By manipulating CORT signaling, we provide strong evidence that CORT physiology mediates the outcome of a growth-survival tradeoff. To our knowledge, this is the first study to concomitantly measure tradeoffs between growth and survival and experimentally link these changes to CORT physiology. Identifying mechanistic links between stressors and fitness-related outcomes is critical to enhance our understanding of tradeoffs.
Papers & Reports Assessing the ecological functionality and integrity of natural ponds, excavated ponds and stormwater basins for conserving amphibian diversity
Authors: Kelly L Smalling; Sara E Breitmeyer; John F Bunnell; Kim J Laidig; Patrick M Burritt; Marilyn C Sobel; Jonathan A Cohl; Michelle L Hladik; Kristin M Romanok; Paul M Bradley
Date: 2012-08-20 | Outlet: Global Ecology and Conservation 30, e01765
Wetlands provide ecological functionality by maintaining and promoting regional biodiversity supporting quality habitat for aquatic organisms. Globally, habitat loss, fragmentation and degradation due to increases in agricultural activities and urban development have reduced or altered geographically isolated wetlands, thus reducing biodiversity. The objective of this study was to assess the relative ecological function and integrity of natural ponds, excavated ponds and stormwater basins for amphibian diversity in the New Jersey Pinelands, USA by comparing hydrologic conditions, water quality, pesticide concentrations (water, sediment and tissue) and plant and anuran assemblages. Twenty-four wetlands were selected based on surrounding land-use and sampled for a variety of abiotic and biotic variables. Abiotic and biotic wetland variables were similar between natural and excavated ponds, with notable differences between the ponds and stormwater basins. Natural and excavated ponds displayed characteristic Pinelands water quality (low pH, high organic carbon, and low pesticide concentrations), exhibited high ecological integrity and supported native anuran species. Stormwater basins and degraded ponds surrounded by altered land-use exhibited degraded water quality (high pH, high pesticide concentrations) and were dominated by non-native and introduced plant and anuran species. Results from this study can broadly inform resource conservation strategies for amphibians and other communities with a diverse range of habitat requirements, particularly in areas where conservation and development are competing priorities. To conserve biodiversity in changing landscapes, wetlands with similar functionality and land-use characteristics need to be identified and managed to preserve water quality for species of conservation concern.
Papers & Reports Demography of the Oregon spotted frog along a hydrologically modified river
Authors: Jennifer C Rowe; Adam Duarte; Christopher A Pearl; Brome McCreary; P K Haggerty; John W Jones; Michael J Adams
Date: 2021-06-21 | Outlet: Ecosphere
Altered flow regimes can contribute to dissociation between life history strategies and environmental conditions, leading to reduced persistence reported for many wildlife populations inhabiting regulated rivers. The Oregon spotted frog (Rana pretiosa) is a threatened species occurring in floodplains, ponds, and wetlands in the Pacific Northwest with a core range in Oregon, USA. All life stages of R. pretiosa are reliant on aquatic habitats, and inundation patterns across the phenological timeline can have implications for population success. We conducted capture-mark-recapture (CMR) sampling of adult and subadult R. pretiosa at three sites along the Deschutes River downstream from two dams that regulate flows. We related the seasonal extent of inundated habitat at each site to monthly survival probabilities using a robust design CMR model. We also developed matrix projection models to simulate population dynamics into the future under current river flows. Monthly survival was strongly associated with the extent and variability of inundated habitat, suggesting some within-season fluctuations at higher water levels could be beneficial. Seasonal survival was lowest in the winter for all three sites, owing to limited water availability and the greater number of months within this season relative to other seasons. Population growth for the two river-connected sites was most strongly linked to adult survival, whereas population growth at the river-disconnected site was most strongly tied to survival in juvenile stages. This research identifies population effects of seasonally limited water and highlights conservation potential of enhancing survival of particularly influential life stages.
Papers & Reports Water Temperature and Availability Shape the Spatial Ecology of a Hot Springs Endemic Toad (Anaxyrus williamsi)
Authors: Brian J Halstead; Patrick M Kleeman; Jonathan P Rose; Kristen J Fouts
Date: 2021-02-26 | Outlet: Herpetologica
Desert amphibians are limited to exploiting ephemeral resources and aestivating or to inhabiting scarce refuges of permanent water, such as springs. Understanding how amphibians use these resources is essential for their conservation. Dixie Valley Toads (Anaxyrus williamsi) are precinctive to a small system of cold and hot springs in the Dixie Valley, Nevada, USA. The toads have been petitioned for listing under the US Endangered Species Act, and information about how they use terrestrial and aquatic resources will help managers to conserve the toads and identify threats like geothermal energy development that might affect these toads. We used radiotelemetry to study the seasonal home ranges, movements, and habitat associations of Dixie Valley Toads in autumn 2018 and spring 2019. We found that toads were very closely associated with water in both seasons, with most observations occurring in water, especially for males in spring and all toads in the autumn. Even when found in terrestrial habitat, toads were a median distance of 4.2 m (95% credible interval = 3.3–5.3) from water; 95% of the time in spring and autumn, toads were within 14 m of water. Dixie Valley Toad habitat selection indicated a similar pattern, with selection in both spring and autumn for locations closer to water and for warmer water and substrates than at nearby available locations. In autumn, toads also avoided bare ground and terrestrial graminoids. Dixie Valley Toads selected brumation sites in, over (within dense vegetation), or near water, often near springs where water depths and temperatures are likely stable through the winter. The reliance of Dixie Valley Toads on water in spring, autumn, and during brumation suggests that alteration to historical flows and water temperatures are likely to affect the toads. Changes to the hydrothermal environment when toads are brumating could be particularly detrimental, potentially killing inactive toads.
Papers & Reports Estimating the survival of unobservable life stages for a declining frog with a complex life-history.
Authors: Jonathan P Rose; Sarah J Kupferberg; Clara A Wheeler; Patrick M Kleeman; Brian J Halstead
Date: 2021-02-15 | Outlet: Ecosphere 12(2):e03381
Demographic models enhance understanding of drivers of population growth and inform conservation efforts to prevent population declines and extinction. For species with complex life histories, however, parameterizing demographic models is challenging because some life stages can be dif?cult to study directly. Integrated population models (IPMs) empower researchers to estimate vital rates for organisms that have cryptic or widely dispersing early life stages by integrating multiple demographic data sources. For a stream-inhabiting frog(Rana boylii) that is declining through much of its range in Oregon and California, USA, we collected egg-mass counts and capture–mark–recapture data on adults from two populations in California to ?t IPMs that estimate adult abundance and the survival rate of both marked and unobserved life stages. Estimates of adult abundance based on long-term monitoring of egg-mass counts showed that study populations ?uctuated greatly inter-annually but were stable at longer timescales (i.e., decades). Adult female survival during 5–6 yr of capture–mark–recapture study periods was nearly equal in each population. Survival rate of R. boylii eggs to the subadult stage is low on average (0.002) but highly variable among years depending on post-oviposition stream ?ow. Population viability analysis showed that survival of adult and subadult life stages has the greatest proportional effect on population growth; the survival of egg and tadpole life stages, however, is more malleable by management interventions. For example, simulations showed head-starting of tadpoles, salvaging stranded egg masses, and limiting aseasonal pulsed ?ows could dramatically reduce the threat of extirpation. This study demonstrates the value of integrating multiple demographic data sources to construct models of population dynamics in species with complex life histories.
Papers & Reports Baseline Conditions and Projected Future Hydro-Climatic Change in National Parks in the Conterminous United States
Authors: William A Battaglin
Date: 2020-06-15 | Outlet: Water 2020, 12(6), 1704; https://doi.org/10.3390/w12061704
Abstract: The National Park Service (NPS) manages hundreds of parks in the United States, and many contain important aquatic ecosystems and/or threatened and endangered aquatic species vulnerable to hydro-climatic change. More effective management of park resources under future hydro-climatic uncertainty requires information on both baseline conditions and the range of projected future conditions. A monthly water balance model was used to assess baseline (1981–1999) conditions and a range of projected future hydro-climatic conditions in 374 NPS parks. General circulation model outputs representing 214 future climate simulations were used to drive the model. Projected future changes in air temperature (T), precipitation (p), and runoff (R) are expressed as departures from historical baselines. Climate simulations indicate increasing T by 2030 for all parks with 50th percentile simulations projecting increases of https://1.67 °C or more in 50% of parks. Departures in 2030 p indicate a mix of mostly increases and some decreases, with 50th percentile simulations projecting increases in p in more than 70% of parks. Departures in R for 2030 are mostly decreases, with the 50th percentile simulations projecting decreases in R in more than 50% of parks in all seasons except winter. Hence, in many NPS parks, R is projected to decrease even when p is projected to increase because of increasing T in all parks. Projected changes in future hydro-climatic conditions can also be assessed for individual parks, and Rocky Mountain National Park and Congaree National Park are used as examples.
Papers & Reports Effects of experimental warming and nutrient enrichment on wetland communities at the Arctic’s edge
Authors: J M Davenport; L Fishback; Blake R Hossack
Date: 2020-09 | Outlet: Hydrobiologia
The disproportionate effects of warming for high-latitude, freshwater ecosystems has been well documented, but in some areas, changes have been further impacted by human-subsidized increases of waterfowl. To gain insight into how predicted changes in temperature and nutrient inputs might affect ecosystem function, we conducted a mesocosm experiment in the Canadian Subarctic with three levels of simulated goose enrichment and warming to measure changes in size and survival of larval wood frogs and boreal chorus frogs and primary productivity (phytoplankton and periphyton biomass). Our results highlight that the consequences of these rapid changes are non-linear and even non-intuitive, with species-specific consumer and ecosystem responses that depend on the magnitude of temperature and nutrient changes as well as community composition.
Papers & Reports Survival estimates for the invasive American Bullfrog
Authors: P E Howell; Erin L Muths; Brent H Sigafus; Blake R Hossack
Outlet: Amphibia-Reptilia
We used five years of capture mark-recapture data to estimate annual apparent survival of post-metamorphic bullfrogs in a population on the Buenos Aires National Wildlife Refuge in their invaded range in Arizona, U.S.A.
Papers & Reports Estimating inundation of small waterbodies with sub-pixel analysis of Landsat imagery: long-term trends in surface water area and evaluation of common drought indices
Authors: I Sall; Christopher J Jarchow; Brent H Sigafus; Lisa A Eby; M J Forzley; Blake R Hossack
Outlet: Remote Sensing in Ecology and Conservation
Small waterbodies are numerically dominant in many landscapes and provide several important ecosystem services, but automated measurement of waterbodies smaller than a standard Landsat pixel (https://0.09 ha) remains challenging. To further evaluate sub-Landsat pixel techniques for estimating inundation extent of small waterbodies (basin area: https://0.06https://1.79 ha), we used a partial spectral unmixing method with matched filtering applied to September 1985–2018 Landsat 5 and 8 imagery from southern Arizona, USA. We estimated trends in modeled surface water area each September and evaluated the ability of several common drought indices to explain variation in mean water area. Our methods accurately classified waterbodies as dry or inundated (Landsat 5: 91.3%; Landsat 8: 98.9%) and modeled and digitized surface water areas were strongly correlated (R2 = https://0.70https://0.92; bias = -https://0.024 – -https://0.015 ha). Estimated surface water area was best explained by the 3-month seasonal standardized precipitation index (SPI03; July?September) and. We found a wide range of estimated relationships between drought indices (e.g., SPI vs. Palmer Drought Severity Index) and estimated water area, even for different durations of the same drought index (e. g., SPI01 vs SPI12). Mean surface area of waterbodies decreased by ~14% from September 1985 to September 2018, which matched declines in annual precipitation in the area and is consistent with broader trends of reduced inundation extent based on larger waterbodies. Estimated of surface water area and trends over time were also consistent when we limited analyses to waterbodies ? https://0.04 ha or those that varied most in size (based on CV). These results emphasize the importance of understanding local systems when relying on drought indices to infer variation in past or future surface water dynamics. Several challenges remain before widespread application of sub-pixel methods is feasible, but our results provide further evidence that partial spectral unmixing with matched filtering provides reliable measures of inundation extent of small waterbodies.
Papers & Reports Species-specific responses to wetland mitigation among amphibians in the Greater Yellowstone Ecosystem
Authors: L K Swartz; W H Lowe; Erin L Muths; Blake R Hossack
Date: 2020 | Outlet: Restoration Ecology 28:206-214
Habitat loss and degradation are leading causes of biodiversity declines, therefore assessing the capacity of created mitigation wetlands to replace habitat for wildlife has become a management priority. We used single season occupancy models to compare occurrence of larvae of four species of pond-breeding amphibians in wetlands created for mitigation, wetlands impacted by road construction, and unimpacted reference wetlands along a highway corridor in the Greater Yellowstone Ecosystem, U.S.A. Created wetlands were shallow and had less aquatic vegetation and surface area than impacted and reference wetlands. Occupancy of barred tiger salamander (Ambystoma mavortium) and boreal chorus frog (Pseudacris maculata) larvae was similar across wetland types, whereas boreal toads (Anaxyrus boreas) occurred more often in created wetlands than reference and impacted wetlands. However, the majority of created wetlands (> 80%) dried partially or completely before amphibian metamorphosis occurred in both years of our study, resulting in heavy mortality of larvae and, we suspect, little to no recruitment. Columbia spotted frogs (Rana luteiventris), which require emergent vegetation that is not common in newly-created wetlands, occurred commonly in impacted and reference wetlands but were found in only one created wetland. Our results show that shallow created wetlands with little aquatic vegetation may be attractive breeding areas for some amphibians, but may result in high mortality and little recruitment if they fail to hold water for the entire larval period.
Papers & Reports Floodplains provide important amphibian habitat despite multiple ecological threats
Authors: M Holgerson; Adam Duarte; Marc P Hayes; Michael J Adams; J Tyson; K Douville; A Strecker
Date: 2019-09-03 | Outlet: Ecosphere
Floodplain ponds and wetlands are productive and biodiverse ecosystems, yet they face multiple threats including altered hydrology, land use change, and non-native species. Protecting and restoring important floodplain ecosystems requires understanding how organisms use these habitats and respond to altered environmental conditions. We developed Bayesian models to evaluate occupancy of six amphibian species across 103 off-channel aquatic habitats in the Chehalis River floodplain, Washington State, USA. The basin has been altered by changes in land use, reduced river-wetland connections, and the establishment of non-native American bullfrogs (Rana catesbeiana = Lithobates catesbeianus) and centrarchid fishes, all of which we hypothesized could influence native amphibian occupancy. Despite potential threats, the floodplain habitats had relatively high rates of native amphibian occupancy, particularly when compared to studies from non-floodplain habitats within the species’ native ranges. The biggest challenge for native amphibians appears to be non-native centrarchid fishes, which strongly reduced occupancy of two native amphibians: the northern red-legged frog (Rana aurora) and the northwestern salamander (Ambystoma gracile). Emergent vegetative cover increased occupancy probability for all five native amphibian species, indicating that plant-management may offer a strategy to counter the negative effect of centrarchids by providing refuge from predation. We found that temporary and permanent hydroperiod sites supported different species, hence both should be conserved on the landscape. Lastly, human-created and natural ponds had similar amphibian occupancy patterns, suggesting that pond construction offers a viable strategy for adding habitats to the floodplain landscape. Overall, floodplain ponds and wetlands provide important amphibian habitat, and we offer management strategies that will bolster amphibian occupancy in an altered floodplain landscape.
Papers & Reports TESTING THEORETICAL METAPOPULATION CONDITIONS WITH GENOTYPIC DATA FROM BOREAL CHORUS FROGS
Authors: Shawn M Billerman
Date: 2019-09 | Outlet: Canadian Journal of Zoology
The metapopulation concept has far reaching implications in ecology and conservation biology. Hanski’s criteria operationally define metapopulations, yet testing them is hindered by logistical and financial constraints inherent to the collection of long-term demographic data. Hence, ecologists and conservationists often assume metapopulation existence for dispersal-limited species that occupy patchy habitats. To advance understanding of metapopulation theory and improve conservation of metapopulations, we used population and landscape genetic tools to develop a methodological framework for evaluating Hanski’s criteria. We used genotypic data (11 microsatellite loci) from a purported metapopulation of boreal chorus frogs (Pseudacris maculata; Agassiz 1850) in Colorado, USA to test Hanski’s four criteria. We found support for each criterion: (1) significant genetic differentiation between wetlands, suggesting distinct breeding populations (2) wetlands had small effective population sizes and recent bottlenecks, suggesting populations do not experience long-term persistence, (3) population graphs provided evidence of gene flow between patches, indicating potential for recolonization, and (4) multiscale bottleneck analyses suggest asynchrony, indicating that simultaneous extinction of all populations was unlikely. Our methodological framework provides a logistically and financially feasible alternative to long-term demographic data for identifying amphibian metapopulations.
Papers & Reports Effects of experimental warming and simulated goose enrichment on wetland communities at the Arctic?s edge
Authors: J M Davenport; L Fishback; Blake R Hossack
Date: 2020 | Outlet: Hydrobiologia (2020) 847:3677–3690
Global warming-related changes to freshwater
ecosystems in Arctic and Subarctic regions have
been magnified by nutrient input from increasing
waterfowl populations. To gain insight into how these
changes might affect ecosystem function, we conducted
a mesocosm experiment in the Subarctic by
enriching N and P (1 9, 10 9, and 20 9 treatments)
and increasing mean water temperatures B 3C. We
measured responses of two species of larval amphibians,
periphyton, and phytoplankton. Wood frog
(Rana sylvatica) larvae developed quicker (odds ratio
[OR] for 1C increase = https://0.903, 95% CI 0.892–0.912)
and were more likely to metamorphose (OR https://1.076,
95% CI 0.022–14.73) in warmer waters. Boreal chorus
frogs (Pseudacris maculata) also developed quicker
with warmer temperatures (OR https://0.880, 95% CI
0.860–0.900), despite a non-significant trend toward
reduced survival (OR https://0.853, 95% CI 0.696–1.039).
Periphyton and phytoplankton concentrations
increased with nutrient additions, as did size of wood
frog metamorphs. Periphyton and phytoplankton did
not vary with temperature, but periphyton was limited
by tadpole abundance. Our results highlight the
potential for non-linear responses to ecosystem
change, with species-specific consumer and ecosystem
responses that depend on the magnitude of
changes.
Papers & Reports Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape
Authors: Christopher J Jarchow; Brent H Sigafus; Erin L Muths; Blake R Hossack
Date: 2019-08 | Outlet: Wetlands
Many natural wetlands around the world have disappeared or been replaced, resulting in the dependence of many wildlife species on small, artificial earthen stock ponds. These ponds provide critical wildlife habitat, such that the accurate detection of water and assessment of inundation extent is required. We applied a full (linear spectral mixture analysis; LSMA) and partial (matched filtering; MF) spectral unmixing algorithm to a 2007 Landsat 5 and a 2014 Landsat 8 satellite image to determine the ability of a time-intensive (i.e., more spectral input; LSMA) vs. a more efficient (less spectral input; MF) spectral unmixing approach to detect and estimate surface water area of stock ponds in southern Arizona, USA and northern Sonora, Mexico. Spearman rank correlations (rs) between modeled and actual inundation areas less than a single Landsat pixel (< 900 m2) were low for both techniques (rs range = https://0.22 to 0.62), but improved for inundation areas > 900 m2 (rs range = https://0.34 to 0.70). Our results demonstrate that the MF approach can model ranked inundation extent of known pond locations with results comparable to or better than LSMA, but further refinement is required for estimating absolute inundation areas and mapping wetlands < 1 Landsat pixel.
Papers & Reports Seeking shelter from the storm: Conservation and management of imperiled species in a changing climate.
Authors: Susan C Walls; William J Barichivich; J Chandler; A M Meade; M Milinichik; Katherine M O'Donnell; M E Owens; Terry Peacock; Joseph Reinman; O E Wetsch
Date: 2019-05-30 | Outlet: Ecology and Evolution 9(12): 7122-7133.
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, and other stressors. In coastal areas of the southeastern United States, many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. Our purpose herein is to provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short-term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico?s coast in the panhandle region of Florida, experienced storm surge that was 2.3 to 3.3 m above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally-threatened Frosted Flatwoods Salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds varied from 80 to 23,100 ?S/cm,compared to 75 to 445 uS/cm in Spring 2018. For those overwashed wetlands that were measured in both Spring and Fall 2018, post-hurricane conductance observations averaged nearly 100 times greater than in the previous Spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non-overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane-prone regions.